Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

EFNA3 long noncoding RNAs induced by hypoxia promote metastatic dissemination

Abstract

The presence of hypoxic regions in solid tumors is an adverse prognostic factor for patient outcome. Here, we show that hypoxia induces the expression of Ephrin-A3 through a novel hypoxia-inducible factor (HIF)-mediated mechanism. In response to hypoxia, the coding EFNA3 mRNA levels remained relatively stable, but HIFs drove the expression of previously unknown long noncoding (lnc) RNAs from EFNA3 locus and these lncRNA caused Ephrin-A3 protein accumulation. Ephrins are cell surface proteins that regulate diverse biological processes by modulating cellular adhesion and repulsion. Mounting evidence implicates deregulated ephrin function in multiple aspects of tumor biology. We demonstrate that sustained expression of both Ephrin-A3 and novel EFNA3 lncRNAs increased the metastatic potential of human breast cancer cells, possibly by increasing the ability of tumor cells to extravasate from the blood vessels into surrounding tissue. In agreement, we found a strong correlation between high EFNA3 expression and shorter metastasis-free survival in breast cancer patients. Taken together, our results suggest that hypoxia could contribute to metastatic spread of breast cancer via HIF-mediated induction of EFNA3 lncRNAs and subsequent Ephrin-A3 protein accumulation.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bertout JA, Patel SA, Simon MC . The impact of O2 availability on human cancer. Nat Rev Cancer 2008; 8: 967–975.

    Article  CAS  Google Scholar 

  2. Vaupel P, Mayer A . Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metast Rev 2007; 26: 225–239.

    Article  CAS  Google Scholar 

  3. Wang GL, Jiang BH, Rue Ea, Semenza GL . Hypoxia-inducible factor 1 is a basic-helix–loop–helix–PAS heterodimer regulated by cellular O2 tension. Proc Natl Acad Sci USA 1995; 92: 5510–5514.

    Article  CAS  Google Scholar 

  4. Kaelin WG, Ratcliffe PJ . Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 2008; 30: 393–402.

    Article  CAS  Google Scholar 

  5. Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O’Rourke J, Mole DR et al. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001; 107: 43–54.

    Article  CAS  Google Scholar 

  6. Salceda S, Caro J . Hypoxia-inducible factor 1alpha (HIF-1alpha) protein is rapidly degraded by the ubiquitin–proteasome system under normoxic conditions. Its stabilization by hypoxia depends on redox-induced changes. J Biol Chem 1997; 272: 22642–22647.

    Article  CAS  Google Scholar 

  7. Hewitson KS, McNeill La, Riordan MV, Tian Y-M, Bullock AN, Welford RW et al. Hypoxia-inducible factor (HIF) asparagine hydroxylase is identical to factor inhibiting HIF (FIH) and is related to the cupin structural family. J Biol Chem 2002; 277: 26351–26355.

    Article  CAS  Google Scholar 

  8. Jiang BH, Zheng JZ, Leung SW, Roe R, Semenza GL . Transactivation and inhibitory domains of hypoxia-inducible factor 1alpha. Modulation of transcriptional activity by oxygen tension. J Biol Chem 1997; 272: 19253–19260.

    Article  CAS  Google Scholar 

  9. Lando D, Peet DJ, Whelan Da, Gorman JJ, Whitelaw ML . Asparagine hydroxylation of the HIF transactivation domain a hypoxic switch. Science 2002; 295: 858–861.

    Article  CAS  Google Scholar 

  10. Semenza GL . Targeting HIF-1 for cancer therapy. Nat Rev Cancer 2003; 3: 721–732.

    Article  CAS  Google Scholar 

  11. Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M et al. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001; 292: 464–468.

    Article  CAS  Google Scholar 

  12. Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ et al. Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001; 292: 468–472.

    Article  CAS  Google Scholar 

  13. Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME et al. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999; 399: 271–275.

    Article  CAS  Google Scholar 

  14. Kaelin WG . Von Hippel-Lindau disease. Annu Rev Pathol 2007; 2: 145–173.

    Article  CAS  Google Scholar 

  15. Semenza GL . Hypoxia-inducible factors: mediators of cancer progression and targets for cancer therapy. Trends Pharmacol Sci 2012; 33: 207–214.

    Article  CAS  Google Scholar 

  16. Lu X, Kang Y . Hypoxia and hypoxia-inducible factors: master regulators of metastasis. Clin Cancer Res 2010; 16: 5928–5935.

    Article  CAS  Google Scholar 

  17. Nievergall E, Lackmann M, Janes PW . Eph-dependent cell–cell adhesion and segregation in development and cancer. Cell Mol Life Sci 2012; 69: 1813–1842.

    Article  CAS  Google Scholar 

  18. Pasquale EB . Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 2010; 10: 165–180.

    Article  CAS  Google Scholar 

  19. Pasquale EB . Eph–ephrin bidirectional signaling in physiology and disease. Cell 2008; 133: 38–52.

    Article  CAS  Google Scholar 

  20. Chen J . Regulation of tumor initiation and metastatic progression by Eph receptor tyrosine kinases. Adv Cancer Res 2012; 114: 1–20.

    Article  CAS  Google Scholar 

  21. Surawska H, Ma PC, Salgia R . The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev 2004; 15: 419–433.

    Article  CAS  Google Scholar 

  22. Vihanto MM, Plock J, Erni D, Frey BM, Frey FJ, Huynh-Do U . Hypoxia up-regulates expression of Eph receptors and ephrins in mouse skin. FASEB J 2005; 19: 1689–1691.

    Article  CAS  Google Scholar 

  23. Ogawa K, Pasqualini R, Lindberg RA, Kain R, Freeman AL, Pasquale EB . The ephrin-A1 ligand and its receptor, EphA2, are expressed during tumor neovascularization. Oncogene 2000; 19: 6043–6052.

    Article  CAS  Google Scholar 

  24. Yamashita T, Ohneda K, Nagano M, Miyoshi C, Kaneko N, Miwa Y et al. Hypoxia-inducible transcription factor-2alpha in endothelial cells regulates tumor neovascularization through activation of ephrin A1. J Biol Chem 2008; 283: 18926–18936.

    Article  CAS  Google Scholar 

  25. Ortiz-Barahona A, Villar D, Pescador N, Amigo J, del Peso L . Genome-wide identification of hypoxia-inducible factor binding sites and target genes by a probabilistic model integrating transcription-profiling data and in silico binding site prediction. Nucleic Acids Res 2010; 38: 2332–2345.

    Article  CAS  Google Scholar 

  26. Cheng Y, Miura RM, Tian B . Prediction of mRNA polyadenylation sites by support vector machine. Bioinformatics 2006; 22: 2320–2325.

    Article  CAS  Google Scholar 

  27. Ng P, Wei C, Sung W, Chiu KP, Lipovich L, Ang CC et al. Gene identification signature (GIS) analysis for transcriptome characterization and genome annotation. Nat Methods 2005; 2: 105–111.

    Article  CAS  Google Scholar 

  28. Miró-Murillo M, Elorza A, Soro-Arnáiz I, Albacete-Albacete L, Ordoñez A, Balsa E et al. Acute Vhl gene inactivation induces cardiac HIF-dependent erythropoietin gene expression. PLoS One 2011; 6: e22589.

    Article  Google Scholar 

  29. Nie L, Wu H, Hsu J-M, Chang S, Labaff AM, Li C et al. Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer. Am J Transl Res 2012; 4: 127–150.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yoon J-H, Abdelmohsen K, Gorospe M . Posttranscriptional gene regulation by long noncoding RNA. J Mol Biol 2013; 425: 3723–3730.

    Article  CAS  Google Scholar 

  31. Huang X, Ding L, Bennewith KL, Tong RT, Welford SM, Ang KK et al. Hypoxia-inducible mir-210 regulates normoxic gene expression involved in tumor initiation. Mol Cell 2009; 35: 856–867.

    Article  CAS  Google Scholar 

  32. Kulshreshtha R, Ferracin M, Wojcik SE, Garzon R, Alder H, Agosto-Perez FJ et al. A microRNA signature of hypoxia. Mol Cell Biol 2007; 27: 1859–1867.

    Article  CAS  Google Scholar 

  33. Chan SY, Zhang Y-Y, Hemann C, Mahoney CE, Zweier JL, Loscalzo J . MicroRNA-210 controls mitochondrial metabolism during hypoxia by repressing the iron-sulfur cluster assembly proteins ISCU1/2. Cell Metab 2009; 10: 273–284.

    Article  CAS  Google Scholar 

  34. Fasanaro P, D’Alessandra Y, Di Stefano V, Melchionna R, Romani S, Pompilio G et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine kinase ligand Ephrin-A3. J Biol Chem 2008; 283: 15878–15883.

    Article  CAS  Google Scholar 

  35. Favaro E, Ramachandran A, McCormick R, Gee H, Blancher C, Crosby M et al. MicroRNA-210 regulates mitochondrial free radical response to hypoxia and krebs cycle in cancer cells by targeting iron sulfur cluster protein ISCU. PLoS One 2010; 5: e10345.

    Article  Google Scholar 

  36. Huang X, Le Q-T, Giaccia AJ . MiR-210—micromanager of the hypoxia pathway. Trends Mol Med 2010; 16: 230–237.

    Article  CAS  Google Scholar 

  37. Fukaya T, Tomari Y . MicroRNAs mediate gene silencing via multiple different pathways in Drosophila. Mol Cell 2012; 48: 825–836.

    Article  CAS  Google Scholar 

  38. Rouhi P, Jensen LD, Cao Z, Hosaka K, Länne T, Wahlberg E et al. Hypoxia-induced metastasis model in embryonic zebrafish. Nat Protoc 2010; 5: 1911–1918.

    Article  CAS  Google Scholar 

  39. Rouhi P, Lee SLC, Cao Z, Hedlund E-M, Jensen LD, Cao Y . Pathological angiogenesis facilitates tumor cell dissemination and metastasis. Cell Cycle 2010; 9: 913–917.

    Article  CAS  Google Scholar 

  40. Sims D, Bursteinas B, Gao Q, Jain E, MacKay A, Mitsopoulos C et al. ROCK: a breast cancer functional genomics resource. Breast Cancer Res Treat 2010; 124: 567–572.

    Article  CAS  Google Scholar 

  41. Choudhry H, Schödel J, Oikonomopoulos S, Camps C, Grampp S, Harris AL et al. Extensive regulation of the non-coding transcriptome by hypoxia: role of HIF in releasing paused RNApol2. EMBO Rep 2014; 15: 70–76.

    Article  CAS  Google Scholar 

  42. Nallamshetty S, Chan SY, Loscalzo J . Hypoxia: a master regulator of microRNA biogenesis and activity. Free Radic Biol Med 2013; 64: 20–30.

    Article  CAS  Google Scholar 

  43. Carrieri C, Cimatti L, Biagioli M, Beugnet A, Zucchelli S, Fedele S et al. Long non-coding antisense RNA controls Uchl1 translation through an embedded SINEB2 repeat. Nature 2012; 491: 454–457.

    Article  CAS  Google Scholar 

  44. Uniacke J, Holterman CE, Lachance G, Franovic A, Jacob MD, Fabian MR et al. An oxygen-regulated switch in the protein synthesis machinery. Nature 2012; 486: 126–129.

    Article  CAS  Google Scholar 

  45. Tiana M, Villar D, Pérez-Guijarro E, Gómez-Maldonado L, Moltó E, Fernández-Miñán A et al. A role for insulator elements in the regulation of gene expression response to hypoxia. Nucleic Acids Res 2011; 40: 1916–1927.

    Article  Google Scholar 

  46. Xiao F, Qiu H, Zhou L, Shen X, Yang L, Ding K . WSS25 inhibits Dicer, downregulating microRNA-210, which targets Ephrin-A3, to suppress human microvascular endothelial cell (HMEC-1) tube formation. Glycobiology 2013; 23: 524–535.

    Article  CAS  Google Scholar 

  47. Barderas R, Mendes M, Torres S, Bartolomé RA, López-Lucendo M, Villar-Vázquez R et al. In-depth characterization of the secretome of colorectal cancer metastatic cells identifies key proteins in cell adhesion, migration, and invasion. Mol Cell Proteomics 2013; 12: 1602–1620.

    Article  CAS  Google Scholar 

  48. Zhang H, Wong CCL, Wei H, Gilkes DM, Korangath P, Chaturvedi P et al. HIF-1-dependent expression of angiopoietin-like 4 and L1CAM mediates vascular metastasis of hypoxic breast cancer cells to the lungs. Oncogene 2012; 31: 1757–1770.

    Article  CAS  Google Scholar 

  49. Villar D, Ortiz-Barahona A, Gómez-Maldonado L, Pescador N, Sánchez-Cabo F, Hackl H et al. Cooperativity of stress-responsive transcription factors in core hypoxia-inducible factor binding regions. PLoS One 2012; 7: e45708.

    Article  CAS  Google Scholar 

  50. Team RC, R Core Team. R : A Language and Environment for Statistical Computing, Vienna, Austria, 2010.

  51. Loi S, Haibe-Kains B, Desmedt C, Wirapati P, Lallemand F, Tutt AM et al. Predicting prognosis using molecular profiling in estrogen receptor-positive breast cancer treated with tamoxifen. BMC Genom 2008; 9: 239.

    Article  Google Scholar 

  52. Pawitan Y, Bjöhle J, Amler L, Borg A-L, Egyhazi S, Hall P et al. Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts. Breast Cancer Res 2005; 7: R953–R964.

    Article  CAS  Google Scholar 

  53. Van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AAM, Voskuil DW et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 2002; 347: 1999–2009.

    Article  CAS  Google Scholar 

  54. Pescador N, Cuevas Y, Naranjo S, Alcaide M, Villar D, Landázuri MO et al. Identification of a functional hypoxia-responsive element that regulates the expression of the egl nine homologue 3 (egln3/phd3) gene. Biochem J 2005; 390: 189–197.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Amparo Acker-Palmer for expert advice on ephrin detection and Ignacio Palmero DGCR8 reagents. This work was supported by Ministerio de Ciencia e Innovación (Spanish Ministry of Science and Innovation, MICINN) (grant numbers SAF2008-03147 and SAF2011_24225 to LdelP and SAF-2010-19256 to BJ); by Comunidad Autónoma de Madrid (grant numbers S2010/BMD-2542 to LdelP), by the 7th Research Framework Programme of the European Union (grant number METOXIA project ref. HEALTH-F2-2009-222741 to LdelP); by CSIC (JAE DOC 2010/FSE2007-2013 to OR) and by Fondo de Investigación Sanitaria/Instituto de Salud Carlos III (grants PI08/90856 and PS09/00227 to LS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L del Peso.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Maldonado, L., Tiana, M., Roche, O. et al. EFNA3 long noncoding RNAs induced by hypoxia promote metastatic dissemination. Oncogene 34, 2609–2620 (2015). https://doi.org/10.1038/onc.2014.200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.200

This article is cited by

Search

Quick links