Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Physical and functional interaction of the TPL2 kinase with nucleophosmin

Abstract

Tumor Progression Locus 2 (TPL2) is widely recognized as a cytoplasmic mitogen-activated protein 3 kinase with a prominent role in the regulation of inflammatory and oncogenic signal transduction. Herein we report that TPL2 may also operate in the nucleus as a physical and functional partner of nucleophosmin (NPM/B23), a major nucleolar phosphoprotein with diverse cellular activities linked to malignancy. We demonstrate that TPL2 mediates the phosphorylation of a fraction of NPM at threonine 199, an event required for its proteasomal degradation and maintenance of steady-state NPM levels. Upon exposure to ultraviolet C, Tpl2 is required for the translocation of de-phosphorylated NPM from the nucleolus to the nucleoplasm. NPM is an endogenous inhibitor of HDM2:p53 interaction and knockdown of TPL2 was found to result in reduced binding of NPM to HDM2, with concomitant defects in p53 accumulation following genotoxic or ribosomal stress. These findings expand our understanding of the function of TPL2 as a negative regulator of carcinogenesis by defining a nuclear role for this kinase in the topological sequestration of NPM, linking p53 signaling to the generation of threonine 199-phosphorylated NPM.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Levine AJ, Oren M . The first 30 years of p53: growing ever more complex. Nat Rev Cancer 2009; 9: 749–758.

    Article  CAS  Google Scholar 

  2. Zilfou JT, Lowe SW . Tumor suppressive functions of p53. Cold Spring Harb Perspect Biol 2009; 1: a001883.

    Article  Google Scholar 

  3. Freed-Pastor WA, Prives C . Mutant p53: one name, many proteins. Genes Dev 2012; 26: 1268–1286.

    Article  CAS  Google Scholar 

  4. Bursać S, Brdovčak MC, Pfannkuchen M, Orsolić I, Golomb L, Zhu Y et al. Mutual protection of ribosomal proteins L5 and L11 from degradation is essential for p53 activation upon ribosomal biogenesis stress. Proc Natl Acad Sci USA 2012; 109: 20467–20472.

    Article  Google Scholar 

  5. Donati G, Peddigari S, Mercer C a, Thomas G . 5S ribosomal RNA is an essential component of a nascent ribosomal precursor complex that regulates the Hdm2-p53 checkpoint. Cell Rep 2013; 4: 87–98.

    Article  CAS  Google Scholar 

  6. Zhang Y, Lu H . Signaling to p53: ribosomal proteins find their way. Cancer Cell 2009; 16: 369–377.

    Article  CAS  Google Scholar 

  7. Bursac S, Brdovcak MC, Donati G, Volarevic S . Activation of the tumor suppressor p53 upon impairment of ribosome biogenesis. Biochim Biophys Acta Mol Basis Dis 2013; 1842: 817–830.

    Article  Google Scholar 

  8. Grisendi S, Mecucci C, Falini B, Pandolfi PP . Nucleophosmin and cancer. Nat Rev Cancer 2006; 6: 493–505.

    Article  CAS  Google Scholar 

  9. Colombo E, Alcalay M, Pelicci PG . Nucleophosmin and its complex network: a possible therapeutic target in hematological diseases. Oncogene 2011; 30: 2595–2609.

    Article  CAS  Google Scholar 

  10. Maiguel DA, Jones L, Chakravarty D, Yang C, Carrier F . Nucleophosmin sets a threshold for p53 response to UV radiation. Mol Cell Biol 2004; 24: 3703–3711.

    Article  CAS  Google Scholar 

  11. Kurki S, Peltonen K, Latonen L, Kiviharju TM, Ojala PM, Meek D et al. Nucleolar protein NPM interacts with HDM2 and protects tumor suppressor protein p53 from HDM2-mediated degradation. Cancer Cell 2004; 5: 465–475.

    Article  CAS  Google Scholar 

  12. Korgaonkar C, Hagen J, Tompkins V, Frazier AA, Allamargot C, Quelle FW et al. Nucleophosmin (B23) targets ARF to nucleoli and inhibits its function. Mol Cell Biol 2005; 25: 1258–1271.

    Article  CAS  Google Scholar 

  13. Banerjee A, Gugasyan R, McMahon M, Gerondakis S . Diverse Toll-like receptors utilize Tpl2 to activate extracellular signal-regulated kinase (ERK) in hemopoietic cells. Proc Natl Acad Sci USA 2006; 103: 3274–3279.

    Article  CAS  Google Scholar 

  14. Beinke S, Robinson MJ, Hugunin M, Ley SC . Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IkappaB kinase-induced proteolysis of NF-kappaB1 p105. Mol Cell Biol 2004; 24: 9658–9667.

    Article  CAS  Google Scholar 

  15. Eliopoulos AG, Wang C-C, Dumitru CD, Tsichlis PN . Tpl2 transduces CD40 and TNF signals that activate ERK and regulates IgE induction by CD40. EMBO J 2003; 22: 3855–3864.

    Article  CAS  Google Scholar 

  16. Das S, Cho J, Lambertz I, Kelliher M, Eliopoulos AG, Du K et al. Tpl2/cot signals activate ERK, JNK, and NF-kappaB in a cell-type and stimulus-specific manner. J Biol Chem 2005; 280: 23748–23757.

    Article  CAS  Google Scholar 

  17. Hatziapostolou M, Polytarchou C, Panutsopulos D, Covic L, Tsichlis PN . Proteinase-activated receptor-1-triggered activation of tumor progression locus-2 promotes actin cytoskeleton reorganization and cell migration. Cancer Res 2008; 68: 1851–1861.

    Article  CAS  Google Scholar 

  18. Eliopoulos AG, Dumitru CD, Wang C-C, Cho J, Tsichlis PN . Induction of COX-2 by LPS in macrophages is regulated by Tpl2-dependent CREB activation signals. EMBO J 2002; 21: 4831–4840.

    Article  CAS  Google Scholar 

  19. Rousseau S, Papoutsopoulou M, Symons A, Cook D, Lucocq JM, Prescott AR et al. TPL2-mediated activation of ERK1 and ERK2 regulates the processing of pre-TNF alpha in LPS-stimulated macrophages. J Cell Sci 2008; 121: 149–154.

    Article  CAS  Google Scholar 

  20. López-Pelaéz M, Fumagalli S, Sanz C, Herrero C, Guerra S, Fernandez M et al. Cot/tpl2-MKK1/2-Erk1/2 controls mTORC1-mediated mRNA translation in Toll-like receptor-activated macrophages. Mol Biol Cell 2012; 23: 2982–2992.

    Article  Google Scholar 

  21. Vougioukalaki M, Kanellis DC, Gkouskou K, Eliopoulos AG . Tpl2 kinase signal transduction in inflammation and cancer. Cancer Lett 2011; 304: 80–89.

    Article  CAS  Google Scholar 

  22. Arthur JSC, Ley SC . Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol 2013; 13: 679–692.

    Article  CAS  Google Scholar 

  23. Patriotis C, Makris A, Bear SE, Tsichlis PN . Tumor progression locus 2 (Tpl-2) encodes a protein kinase involved in the progression of rodent T-cell lymphomas and in T-cell activation. Proc Natl Acad Sci USA 1993; 90: 2251–2255.

    Article  CAS  Google Scholar 

  24. Erny KM, Peli J, Lambert JF, Muller V, Diggelmann H . Involvement of the Tpl-2/cot oncogene in MMTV tumorigenesis. Oncogene 1996; 13: 2015–2020.

    CAS  Google Scholar 

  25. Gkirtzimanaki K, Gkouskou KK, Oleksiewicz U, Nikolaidis G, Vyrla D, Liontos M et al. TPL2 kinase is a suppressor of lung carcinogenesis. Proc Natl Acad Sci USA 2013; 110: E1470–E1479.

    Article  CAS  Google Scholar 

  26. Serebrennikova OB, Tsatsanis C, Mao C, Gounaris E, Ren W, Siracusa LD et al. Tpl2 ablation promotes intestinal inflammation and tumorigenesis in Apcmin mice by inhibiting IL-10 secretion and regulatory T-cell generation. Proc Natl Acad Sci USA 2012; 109: E1082–E1091.

    Article  CAS  Google Scholar 

  27. Koliaraki V, Roulis M, Kollias G . Tpl2 regulates intestinal myofibroblast HGF release to suppress colitis-associated tumorigenesis. J Clin Invest 2012; 122: 4231–4242.

    Article  CAS  Google Scholar 

  28. Decicco-Skinner KL, Trovato EL, Simmons JK, Lepage PK, Wiest JS . Loss of tumor progression locus 2 (tpl2) enhances tumorigenesis and inflammation in two-stage skin carcinogenesis. Oncogene 2011; 30: 389–397.

    Article  CAS  Google Scholar 

  29. Latonen L, Laiho M . Cellular UV damage responses—functions of tumor suppressor p53. Biochim Biophys Acta 2005; 1755: 71–89.

    CAS  Google Scholar 

  30. Gantke T, Sriskantharajah S, Ley SC . Regulation and function of TPL-2, an IκB kinase-regulated MAP kinase kinase kinase. Cell Res 2011; 21: 131–145.

    Article  CAS  Google Scholar 

  31. Choi HS, Kang BS, Shim J-H, Cho Y-Y, Choi BY, Bode AM et al. Cot, a novel kinase of histone H3, induces cellular transformation through up-regulation of c-fos transcriptional activity. FASEB J 2008; 22: 113–126.

    Article  CAS  Google Scholar 

  32. Cho J, Tsichlis PN . Phosphorylation at Thr-290 regulates Tpl2 binding to NF-kappaB1/p105 and Tpl2 activation and degradation by lipopolysaccharide. Proc Natl Acad Sci USA 2005; 102: 2350–2355.

    Article  CAS  Google Scholar 

  33. Moore HM, Bai B, Boisvert F-M, Latonen L, Rantanen V, Simpson JC et al. Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation. Mol Cell Proteomics 2011; 10: 009241–001.

    Article  Google Scholar 

  34. Wu MH, Chang JH, Yung BYM . Resistance to UV-induced cell-killing in nucleophosmin/B23 over-expressed NIH 3T3 fibroblasts: enhancement of DNA repair and up-regulation of PCNA in association with nucleophosmin/B23 over-expression. Carcinogenesis 2002; 23: 93–100.

    Article  Google Scholar 

  35. Li J, Zhang X, Sejas DP, Bagby GC, Pang Q . Hypoxia-induced nucleophosmin protects cell death through inhibition of p53. J Biol Chem 2004; 279: 41275–41279.

    Article  CAS  Google Scholar 

  36. Chao A, Lin C-Y, Tsai C-L, Hsueh S, Lin Y-Y, Lin C-T et al. Estrogen stimulates the proliferation of human endometrial cancer cells by stabilizing nucleophosmin/B23 (NPM/B23). J Mol Med (Berl) 2013; 91: 249–259.

    Article  CAS  Google Scholar 

  37. Lindström MS . NPM1/B23: a multifunctional chaperone in ribosome biogenesis and chromatin remodeling. Biochem Res Int 2011; 2011: 195209.

    Article  Google Scholar 

  38. Negi SS, Olson MOJ . Effects of interphase and mitotic phosphorylation on the mobility and location of nucleolar protein B23. J Cell Sci 2006; 119: 3676–3685.

    Article  CAS  Google Scholar 

  39. Salmeron A, Ahmad TB, Carlile GW, Pappin D, Narsimhan RP, Ley SC . Activation of MEK-1 and SEK-1 by Tpl-2 proto-oncoprotein, a novel MAP kinase kinase kinase. EMBO J 1996; 15: 817–826.

    Article  CAS  Google Scholar 

  40. Wang S, Ghosh RN, Chellappan SP . Raf-1 physically interacts with Rb and regulates its function: a link between mitogenic signaling and cell cycle regulation. Mol Cell Biol 1998; 18: 7487–7498.

    Article  CAS  Google Scholar 

  41. Lee SB, Xuan Nguyen TL, Choi JW, Lee K-H, Cho S-W, Liu Z et al. Nuclear Akt interacts with B23/NPM and protects it from proteolytic cleavage, enhancing cell survival. Proc Natl Acad Sci USA 2008; 105: 16584–16589.

    Article  CAS  Google Scholar 

  42. Okuwaki M . The structure and functions of NPM1/Nucleophsmin/B23, a multifunctional nucleolar acidic protein. J Biochem 2008; 143: 441–448.

    Article  CAS  Google Scholar 

  43. Koike A, Nishikawa H, Wu W, Okada Y, Venkitaraman AR, Ohta T . Recruitment of phosphorylated NPM1 to sites of DNA damage through RNF8-dependent ubiquitin conjugates. Cancer Res 2010; 70: 6746–6756.

    Article  CAS  Google Scholar 

  44. Lin CY, Tan BC, Liu H, Shih C, Chien K, Lin C et al. Dephosphorylation of nucleophosmin by PP1β facilitates pRB binding and consequent E2F1-dependent DNA repair. Mol Biol Cell 2010; 21: 4409–4417.

    Article  CAS  Google Scholar 

  45. Okuda M, Horn HF, Tarapore P, Tokuyama Y, Smulian a G, Chan PK et al. Nucleophosmin/B23 is a target of CDK2/cyclin E in centrosome duplication. Cell 2000; 103: 127–140.

    Article  CAS  Google Scholar 

  46. Tokuyama Y, Horn HF, Kawamura K, Tarapore P, Fukasawa K . Specific phosphorylation of nucleophosmin on Thr(199) by cyclin-dependent kinase 2-cyclin E and its role in centrosome duplication. J Biol Chem 2001; 276: 21529–21537.

    Article  CAS  Google Scholar 

  47. Brady SN, Maggi LB, Winkeler CL, Ea Toso, Gwinn a S, Pelletier CL et al. Nucleophosmin protein expression level, but not threonine 198 phosphorylation, is essential in growth and proliferation. Oncogene 2009; 28: 3209–3220.

    Article  CAS  Google Scholar 

  48. Colombo E, Marine J-C, Danovi D, Falini B, Pelicci PG . Nucleophosmin regulates the stability and transcriptional activity of p53. Nat Cell Biol 2002; 4: 529–533.

    Article  CAS  Google Scholar 

  49. Chen D, Shan J, Zhu W-G, Qin J, Gu W . Transcription-independent ARF regulation in oncogenic stress-mediated p53 responses. Nature 2010; 464: 624–627.

    Article  CAS  Google Scholar 

  50. Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R et al. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell 2003; 12: 1151–1164.

    Article  CAS  Google Scholar 

  51. Cuomo ME, Knebel A, Morrice N, Paterson H, Cohen P, Mittnacht S . p53-Driven apoptosis limits centrosome amplification and genomic instability downstream of NPM1 phosphorylation. Nat Cell Biol 2008; 10: 723–730.

    Article  CAS  Google Scholar 

  52. Sato K, Hayami R, Wu W, Nishikawa T, Nishikawa H, Okuda Y et al. Nucleophosmin/B23 is a candidate substrate for the BRCA1-BARD1 ubiquitin ligase. J Biol Chem 2004; 279: 30919–30922.

    Article  CAS  Google Scholar 

  53. Endo A, Matsumoto M, Inada T, Yamamoto A, Nakayama KI, Kitamura N et al. Nucleolar structure and function are regulated by the deubiquitylating enzyme USP36. J Cell Sci 2009; 122: 678–686.

    Article  CAS  Google Scholar 

  54. Zhang M-J, Ding Y-L, Xu C-W, Yang Y, Lian W-X, Zhan Y-Q et al. Erythroid differentiation-associated gene interacts with NPM1 (nucleophosmin/B23) and increases its protein stability, resisting cell apoptosis. FEBS J 2012; 279: 2848–2862.

    Article  CAS  Google Scholar 

  55. Wu MH, Yung BYM . UV stimulation of nucleophosmin/B23 expression is an immediate-early gene response induced by damaged DNA. J Biol Chem 2002; 277: 48234–48240.

    Article  CAS  Google Scholar 

  56. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA et al. COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 2010; 468: 968–972.

    Article  CAS  Google Scholar 

  57. Eliopoulos AG, Davies C, Blake SSM, Murray P, Najafipour S, Tsichlis PN et al. The oncogenic protein kinase Tpl-2/Cot contributes to Epstein-Barr virus-encoded latent infection membrane protein 1-induced NF-κB signaling downstream of TRAF2. J Virol 2002; 76: 4567–4579.

    Article  CAS  Google Scholar 

  58. Kane LP, Mollenauer MN, Xu Z, Turck CW, Weiss A . Akt-dependent phosphorylation specifically regulates Cot induction of NF-kappaB-dependent transcription. Mol Cell Biol 2002; 22: 5962–5974.

    Article  CAS  Google Scholar 

  59. Louvet E, Junéra RH, Berthuy I, Hernandez-Verdum D . Compartmentation of the nucleolar processing proteins in the granular component is a CK2-driven process. Mol Biol Cell 2006; 17: 2537–2546

    Article  CAS  Google Scholar 

  60. Heffernan TP, Simpson DA, Frank AR, Heinloth AN, Paules RS, Cordeiro-stone M et al. An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage. Mol Cell Biol 2002; 22: 8552–8561.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Moshe Oren and Varda Rotter (Weizmann Institute, Israel), Josef Papamatheakis (FORTH/IMBB, Greece), Angeliki Malliri (Patterson Institute for Cancer Research, UK), Vassilis Gorgoulis (University of Athens Medical School, Greece) and Charalambos Spilianakis (FORTH/IMBB, Greece) for their kind gift of reagents and Marina Ioannou for excellent technical assistance. This work was supported by the European Commission (EC) research program ‘Inflammation & Cancer Research in Europe’ (INFLA-CARE; EC Contract 223151) to AGE and SV, the EC support program ‘Translational Potential’ (TransPOT; EC Contract 285948) to AGE and a University of Crete Maria Manassaki scholarship to DK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A G Eliopoulos.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kanellis, D., Bursac, S., Tsichlis, P. et al. Physical and functional interaction of the TPL2 kinase with nucleophosmin. Oncogene 34, 2516–2526 (2015). https://doi.org/10.1038/onc.2014.183

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.183

This article is cited by

Search

Quick links