Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies

Abstract

Accurate DNA replication and repair is essential for proper development, growth and tumor-free survival in all multicellular organisms. A key requirement for the maintenance of genomic integrity is the availability of adequate and balanced pools of deoxyribonucleoside triphosphates (dNTPs), the building blocks of DNA. Notably, dNTP pool alterations lead to genomic instability and have been linked to multiple human diseases, including mitochondrial disorders, susceptibility to viral infection and cancer. In this review, we discuss how a key regulator of dNTP biosynthesis in mammals, the enzyme ribonucleotide reductase (RNR), impacts cancer susceptibility and serves as a target for anti-cancer therapies. Because RNR-regulated dNTP production can influence DNA replication fidelity while also supporting genome-protecting DNA repair, RNR has complex and stage-specific roles in carcinogenesis. Nevertheless, cancer cells are dependent on RNR for de novo dNTP biosynthesis. Therefore, elevated RNR expression is a characteristic of many cancers, and an array of mechanistically distinct RNR inhibitors serve as effective agents for cancer treatment. The dNTP metabolism machinery, including RNR, has been exploited for therapeutic benefit for decades and remains an important target for cancer drug development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Mathews CK . DNA precursor metabolism and genomic stability. FASEB J 2006; 20: 1300–1314.

    CAS  Google Scholar 

  2. Rampazzo C, Miazzi C, Franzolin E, Pontarin G, Ferraro P, Frangini M et al. Regulation by degradation, a cellular defense against deoxyribonucleotide pool imbalances. Mutat Res 2010; 703: 2–10.

    CAS  Google Scholar 

  3. Anglana M, Apiou F, Bensimon A, Debatisse M . Dynamics of DNA replication in mammalian somatic cells: nucleotide pool modulates origin choice and interorigin spacing. Cell 2003; 114: 385–394.

    CAS  Google Scholar 

  4. Courbet S, Gay S, Arnoult N, Wronka G, Anglana M, Brison O et al. Replication fork movement sets chromatin loop size and origin choice in mammalian cells. Nature 2008; 455: 557–560.

    CAS  Google Scholar 

  5. Ge XQ, Jackson DA, Blow JJ . Dormant origins licensed by excess Mcm2-7 are required for human cells to survive replicative stress. Genes Dev 2007; 21: 3331–3341.

    CAS  Google Scholar 

  6. Reichard P . Interactions between deoxyribonucleotide and DNA synthesis. Annu Rev Biochem 1988; 57: 349–374.

    CAS  Google Scholar 

  7. Bester AC, Roniger M, Oren YS, Im MM, Sarni D, Chaoat M et al. Nucleotide deficiency promotes genomic instability in early stages of cancer development. Cell 2011; 145: 435–446.

    CAS  Google Scholar 

  8. Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller MC, Shaikh N et al. Replication stress links structural and numerical cancer chromosomal instability. Nature 2013; 494: 492–496.

    CAS  Google Scholar 

  9. Wheeler LJ, Rajagopal I, Mathews CK . Stimulation of mutagenesis by proportional deoxyribonucleoside triphosphate accumulation in Escherichia coli. DNA Repair (Amst) 2005; 4: 1450–1456.

    CAS  Google Scholar 

  10. Chabes A, Georgieva B, Domkin V, Zhao X, Rothstein R, Thelander L . Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxed feedback inhibition of ribonucleotide reductase. Cell 2003; 112: 391–401.

    CAS  Google Scholar 

  11. Fersht AR . Fidelity of replication of phage phi X174 DNA by DNA polymerase III holoenzyme: spontaneous mutation by misincorporation. Proc Natl Acad Sci USA 1979; 76: 4946–4950.

    CAS  Google Scholar 

  12. Petruska J, Goodman MF, Boosalis MS, Sowers LC, Cheong C, Tinoco I Jr . Comparison between DNA melting thermodynamics and DNA polymerase fidelity. Proc Natl Acad Sci USA 1988; 85: 6252–6256.

    CAS  Google Scholar 

  13. Perrino FW, Loeb LA . Differential extension of 3' mispairs is a major contribution to the high fidelity of calf thymus DNA polymerase-alpha. J Biol Chem 1989; 264: 2898–2905.

    CAS  Google Scholar 

  14. Mendelman LV, Petruska J, Goodman MF . Base mispair extension kinetics. Comparison of DNA polymerase alpha and reverse transcriptase. J Biol Chem 1990; 265: 2338–2346.

    CAS  Google Scholar 

  15. Bebenek K, Roberts JD, Kunkel TA . The effects of dNTP pool imbalances on frameshift fidelity during DNA replication. J Biol Chem 1992; 267: 3589–3596.

    CAS  Google Scholar 

  16. Kunz BA, Kohalmi SE . Modulation of mutagenesis by deoxyribonucleotide levels. Annu Rev Genet 1991; 25: 339–359.

    CAS  Google Scholar 

  17. Cotruvo JA, Stubbe J . Class I ribonucleotide reductases: metallocofactor assembly and repair in vitro and in vivo. Annu Rev Biochem 2011; 80: 733–767.

    CAS  Google Scholar 

  18. Uhlin U, Eklund H . Structure of ribonucleotide reductase protein R1. Nature 1994; 370: 533–539.

    CAS  Google Scholar 

  19. Minnihan EC, Nocera DG, Stubbe J . Reversible, long-range radical transfer in E. coli class Ia ribonucleotide reductase. Acc Chem Res 2013; 46: 2524–2535.

    CAS  Google Scholar 

  20. Fu Y, Long MJ, Rigney M, Parvez S, Blessing WA, Aye Y . Uncoupling of allosteric and oligomeric regulation in a functional hybrid enzyme constructed from Escherichia coli and human ribonucleotide reductase. Biochemistry 2013; 52: 7050–7059.

    CAS  Google Scholar 

  21. Fairman JW, Wijerathna SR, Ahmad MF, Xu H, Nakano R, Jha S et al. Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization. Nat Struct Mol Biol 2011; 18: 316–322.

    CAS  Google Scholar 

  22. Aye Y, Stubbe J . Clofarabine 5'-di and -triphosphates inhibit human ribonucleotide reductase by altering the quaternary structure of its large subunit. Proc Natl Acad Sci USA 2011; 108: 9815–9820.

    CAS  Google Scholar 

  23. Aye Y, Brignole EJ, Long MJ, Chittuluru J, Drennan CL, Asturias FJ et al. Clofarabine targets the large subunit (alpha) of human ribonucleotide reductase in live cells by assembly into persistent hexamers. Chem Biol 2012; 19: 799–805.

    CAS  Google Scholar 

  24. Kashlan OB, Cooperman BS . Comprehensive model for allosteric regulation of mammalian ribonucleotide reductase: refinements and consequences. Biochemistry 2003; 42: 1696–1706.

    CAS  Google Scholar 

  25. Meyer Y, Buchanan BB, Vignols F, Reichheld JP . Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 2009; 43: 335–367.

    CAS  Google Scholar 

  26. Tanaka H, Arakawa H, Yamaguchi T, Shiraishi K, Fukuda S, Matsui K et al. A ribonucleotide reductase gene involved in a p53-dependent cell-cycle checkpoint for DNA damage. Nature 2000; 404: 42–49.

    Article  CAS  Google Scholar 

  27. Chabes AL, Pfleger CM, Kirschner MW, Thelander L . Mouse ribonucleotide reductase R2 protein: a new target for anaphase-promoting complex-Cdh1-mediated proteolysis. Proc Natl Acad Sci USA 2003; 100: 3925–3929.

    CAS  Google Scholar 

  28. D'Angiolella V, Donato V, Forrester FM, Jeong YT, Pellacani C, Kudo Y et al. Cyclin F-mediated degradation of ribonucleotide reductase M2 controls genome integrity and DNA repair. Cell 2012; 149: 1023–1034.

    CAS  Google Scholar 

  29. Nordlund P, Reichard P . Ribonucleotide reductases. Annu Rev Biochem 2006; 75: 681–706.

    CAS  Google Scholar 

  30. Bourdon A, Minai L, Serre V, Jais JP, Sarzi E, Aubert S et al. Mutation of RRM2B, encoding p53-controlled ribonucleotide reductase (p53R2), causes severe mitochondrial DNA depletion. Nat Genet 2007; 39: 776–780.

    CAS  Google Scholar 

  31. Pontarin G, Ferraro P, Hakansson P, Thelander L, Reichard P, Bianchi V . p53R2-dependent ribonucleotide reduction provides deoxyribonucleotides in quiescent human fibroblasts in the absence of induced DNA damage. J Biol Chem 2007; 282: 16820–16828.

    CAS  Google Scholar 

  32. Pontarin G, Ferraro P, Bee L, Reichard P, Bianchi V . Mammalian ribonucleotide reductase subunit p53R2 is required for mitochondrial DNA replication and DNA repair in quiescent cells. Proc Natl Acad Sci USA 2012; 109: 13302–13307.

    CAS  Google Scholar 

  33. Guittet O, Hakansson P, Voevodskaya N, Fridd S, Graslund A, Arakawa H et al. Mammalian p53R2 protein forms an active ribonucleotide reductase in vitro with the R1 protein, which is expressed both in resting cells in response to DNA damage and in proliferating cells. J Biol Chem 2001; 276: 40647–40651.

    CAS  Google Scholar 

  34. Mandel H, Szargel R, Labay V, Elpeleg O, Saada A, Shalata A et al. The deoxyguanosine kinase gene is mutated in individuals with depleted hepatocerebral mitochondrial DNA. Nat Genet 2001; 29: 337–341.

    CAS  Google Scholar 

  35. Saada A, Shaag A, Mandel H, Nevo Y, Eriksson S, Elpeleg O . Mutant mitochondrial thymidine kinase in mitochondrial DNA depletion myopathy. Nat Genet 2001; 29: 342–344.

    CAS  Google Scholar 

  36. Chimploy K, Song S, Wheeler LJ, Mathews CK . Ribonucleotide reductase association with Mammalian liver mitochondria. J Biol Chem 2013; 288: 13145–13155.

    CAS  Google Scholar 

  37. Kollberg G, Darin N, Benan K, Moslemi AR, Lindal S, Tulinius M et al. A novel homozygous RRM2B missense mutation in association with severe mtDNA depletion. Neuromuscul Disord 2009; 19: 147–150.

    Google Scholar 

  38. Shaibani A, Shchelochkov OA, Zhang S, Katsonis P, Lichtarge O, Wong LJ et al. Mitochondrial neurogastrointestinal encephalopathy due to mutations in RRM2B. Arch Neurol 2009; 66: 1028–1032.

    Google Scholar 

  39. Tyynismaa H, Ylikallio E, Patel M, Molnar MJ, Haller RG, Suomalainen A . A heterozygous truncating mutation in RRM2B causes autosomal-dominant progressive external ophthalmoplegia with multiple mtDNA deletions. Am J Hum Genet 2009; 85: 290–295.

    CAS  Google Scholar 

  40. Kimura T, Takeda S, Sagiya Y, Gotoh M, Nakamura Y, Arakawa H . Impaired function of p53R2 in Rrm2b-null mice causes severe renal failure through attenuation of dNTP pools. Nat Genet 2003; 34: 440–445.

    CAS  Google Scholar 

  41. Hofer A, Crona M, Logan DT, Sjoberg BM . DNA building blocks: keeping control of manufacture. Crit Rev Biochem Mol Biol 2012; 47: 50–63.

    CAS  Google Scholar 

  42. Engström Y, Eriksson S, Jildevik I, Skog S, Thelander L, Tribukait B . Cell cycle-dependent expression of mammalian ribonucleotide reductase. Differential regulation of the two subunits. J Biol Chem 1985; 260: 9114–9116.

    Google Scholar 

  43. Eriksson S, Graslund A, Skog S, Thelander L, Tribukait B . Cell cycle-dependent regulation of mammalian ribonucleotide reductase. The S phase-correlated increase in subunit M2 is regulated by de novo protein synthesis. J Biol Chem 1984; 259: 11695–11700.

    CAS  Google Scholar 

  44. Chabes A, Thelander L . Controlled protein degradation regulates ribonucleotide reductase activity in proliferating mammalian cells during the normal cell cycle and in response to DNA damage and replication blocks. J Biol Chem 2000; 275: 17747–17753.

    CAS  Google Scholar 

  45. Johansson E, Hjortsberg K, Thelander L . Two YY-1-binding proximal elements regulate the promoter strength of the TATA-less mouse ribonucleotide reductase R1 gene. J Biol Chem 1998; 273: 29816–29821.

    CAS  Google Scholar 

  46. Engström Y, Rozell B, Hansson HA, Stemme S, Thelander L . Localization of ribonucleotide reductase in mammalian cells. Embo J 1984; 3: 863–867.

    Google Scholar 

  47. Hakansson P, Hofer A, Thelander L . Regulation of mammalian ribonucleotide reduction and dNTP pools after DNA damage and in resting cells. J Biol Chem 2006; 281: 7834–7841.

    CAS  Google Scholar 

  48. Chabes AL, Bjorklund S, Thelander L . S Phase-specific transcription of the mouse ribonucleotide reductase R2 gene requires both a proximal repressive E2F-binding site and an upstream promoter activating region. J Biol Chem 2004; 279: 10796–10807.

    CAS  Google Scholar 

  49. Engström Y, Rozell B . Immunocytochemical evidence for the cytoplasmic localization and differential expression during the cell cycle of the M1 and M2 subunits of mammalian ribonucleotide reductase. EMBO J 1988; 7: 1615–1620.

    Google Scholar 

  50. Pontarin G, Fijolek A, Pizzo P, Ferraro P, Rampazzo C, Pozzan T et al. Ribonucleotide reduction is a cytosolic process in mammalian cells independently of DNA damage. Proc Natl Acad Sci USA 2008; 105: 17801–17806.

    CAS  Google Scholar 

  51. Niida H, Katsuno Y, Sengoku M, Shimada M, Yukawa M, Ikura M et al. Essential role of Tip60-dependent recruitment of ribonucleotide reductase at DNA damage sites in DNA repair during G1 phase. Genes Dev 2010; 24: 333–338.

    CAS  Google Scholar 

  52. Hu CM, Yeh MT, Tsao N, Chen CW, Gao QZ, Chang CY et al. Tumor cells require thymidylate kinase to prevent dUTP incorporation during DNA repair. Cancer Cell 2012; 22: 36–50.

    CAS  Google Scholar 

  53. Zhang YW, Jones TL, Martin SE, Caplen NJ, Pommier Y . Implication of checkpoint kinase-dependent up-regulation of ribonucleotide reductase R2 in DNA damage response. J Biol Chem 2009; 284: 18085–18095.

    CAS  Google Scholar 

  54. Anderson DD, Woeller CF, Chiang EP, Shane B, Stover PJ . Serine hydroxymethyltransferase anchors de novo thymidylate synthesis pathway to nuclear lamina for DNA synthesis. J Biol Chem 2012; 287: 7051–7062.

    CAS  Google Scholar 

  55. Elledge SJ, Zhou Z, Allen JB, Navas TA . DNA damage and cell cycle regulation of ribonucleotide reductase. Bioessays 1993; 15: 333–339.

    CAS  Google Scholar 

  56. Hurta RA, Wright JA . Alterations in the activity and regulation of mammalian ribonucleotide reductase by chlorambucil, a DNA damaging agent. J Biol Chem 1992; 267: 7066–7071.

    CAS  Google Scholar 

  57. Filatov D, Bjorklund S, Johansson E, Thelander L . Induction of the mouse ribonucleotide reductase R1 and R2 genes in response to DNA damage by UV light. J Biol Chem 1996; 271: 23698–23704.

    CAS  Google Scholar 

  58. Nakano K, Balint E, Ashcroft M, Vousden KH . A ribonucleotide reductase gene is a transcriptional target of p53 and p73. Oncogene 2000; 19: 4283–4289.

    CAS  Google Scholar 

  59. Chang L, Zhou B, Hu S, Guo R, Liu X, Jones SN et al. ATM-mediated serine 72 phosphorylation stabilizes ribonucleotide reductase small subunit p53R2 protein against MDM2 to DNA damage. Proc Natl Acad Sci USA 2008; 105: 18519–18524.

    CAS  Google Scholar 

  60. Yamaguchi T, Matsuda K, Sagiya Y, Iwadate M, Fujino MA, Nakamura Y et al. p53R2-dependent pathway for DNA synthesis in a p53-regulated cell cycle checkpoint. Cancer Res 2001; 61: 8256–8262.

    CAS  Google Scholar 

  61. Moss J, Tinline-Purvis H, Walker CA, Folkes LK, Stratford MR, Hayles J et al. Break-induced ATR and Ddb1-Cul4(Cdt)(2) ubiquitin ligase-dependent nucleotide synthesis promotes homologous recombination repair in fission yeast. Genes Dev 2010; 24: 2705–2716.

    CAS  Google Scholar 

  62. Burkhalter MD, Roberts SA, Havener JM, Ramsden DA . Activity of ribonucleotide reductase helps determine how cells repair DNA double strand breaks. DNA Repair (Amst) 2009; 8: 1258–1263.

    CAS  Google Scholar 

  63. Gon S, Napolitano R, Rocha W, Coulon S, Fuchs RP . Increase in dNTP pool size during the DNA damage response plays a key role in spontaneous and induced-mutagenesis in Escherichia coli. Proc Natl Acad Sci USA 2011; 108: 19311–19316.

    CAS  Google Scholar 

  64. Lis ET, O'Neill BM, Gil-Lamaignere C, Chin JK, Romesberg FE . Identification of pathways controlling DNA damage induced mutation in Saccharomyces cerevisiae. DNA Repair (Amst) 2008; 7: 801–810.

    CAS  Google Scholar 

  65. Sabouri N, Viberg J, Goyal DK, Johansson E, Chabes A . Evidence for lesion bypass by yeast replicative DNA polymerases during DNA damage. Nucleic Acids Res 2008; 36: 5660–5667.

    CAS  Google Scholar 

  66. Weinberg G, Ullman B, Martin DW Jr . Mutator phenotypes in mammalian cell mutants with distinct biochemical defects and abnormal deoxyribonucleoside triphosphate pools. Proc Natl Acad Sci USA 1981; 78: 2447–2451.

    CAS  Google Scholar 

  67. Caras IW, Martin DW Jr . Molecular cloning of the cDNA for a mutant mouse ribonucleotide reductase M1 that produces a dominant mutator phenotype in mammalian cells. Mol Cell Biol 1988; 8: 2698–2704.

    CAS  Google Scholar 

  68. Ullman B, Clift SM, Gudas LJ, Levinson BB, Wormsted MA, Martin DW Jr . Alterations in deoxyribonucleotide metabolism in cultured cells with ribonucleotide reductase activities refractory to feedback inhibition by 2'-deoxyadenosine triphosphate. J Biol Chem 1980; 255: 8308–8314.

    CAS  Google Scholar 

  69. Akerblom L, Ehrenberg A, Graslund A, Lankinen H, Reichard P, Thelander L . Overproduction of the free radical of ribonucleotide reductase in hydroxyurea-resistant mouse fibroblast 3T6 cells. Proc Natl Acad Sci USA 1981; 78: 2159–2163.

    CAS  Google Scholar 

  70. Ahluwalia D, Schaaper RM . Hypermutability and error catastrophe due to defects in ribonucleotide reductase. Proc Natl Acad Sci USA 2013; 110: 18596–18601.

    Google Scholar 

  71. Ward PS, Thompson CB Metabolic reprogramming: a cancer hallmark even warburg did not anticipate. Cancer Cell 2012; 21: 297–308.

    CAS  Google Scholar 

  72. Elford HL, Freese M, Passamani E, Morris HP . Ribonucleotide reductase and cell proliferation. I. Variations of ribonucleotide reductase activity with tumor growth rate in a series of rat hepatomas. J Biol Chem 1970; 245: 5228–5233.

    CAS  Google Scholar 

  73. Morikawa T, Maeda D, Kume H, Homma Y, Fukayama M . Ribonucleotide reductase M2 subunit is a novel diagnostic marker and a potential therapeutic target in bladder cancer. Histopathology 2010; 57: 885–892.

    Google Scholar 

  74. Wang LM, Lu FF, Zhang SY, Yao RY, Xing XM, Wei ZM . Overexpression of catalytic subunit M2 in patients with ovarian cancer. Chin Med J (Engl) 2012; 125: 2151–2156.

    CAS  Google Scholar 

  75. Morikawa T, Hino R, Uozaki H, Maeda D, Ushiku T, Shinozaki A et al. Expression of ribonucleotide reductase M2 subunit in gastric cancer and effects of RRM2 inhibition in vitro. Hum Pathol 2010; 41: 1742–1748.

    CAS  Google Scholar 

  76. Lu AG, Feng H, Wang PX, Han DP, Chen XH, Zheng MH . Emerging roles of the ribonucleotide reductase M2 in colorectal cancer and ultraviolet-induced DNA damage repair. World J Gastroenterol 2012; 18: 4704–4713.

    CAS  Google Scholar 

  77. Liu X, Zhang H, Lai L, Wang X, Loera S, Xue L et al. Ribonucleotide reductase small subunit M2 serves as a prognostic biomarker and predicts poor survival of colorectal cancers. Clin Sci (Lond) 2013; 124: 567–578.

    CAS  Google Scholar 

  78. Ma XJ, Salunga R, Tuggle JT, Gaudet J, Enright E, McQuary P et al. Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 2003; 100: 5974–5979.

    CAS  Google Scholar 

  79. Aird KM, Li H, Xin F, Konstantinopoulos PA, Zhang R . Identification of ribonucleotide reductase M2 as a potential target for pro-senescence therapy in epithelial ovarian cancer. Cell Cycle 2013; 13: 199–207.

    Google Scholar 

  80. Aird KM, Zhang G, Li H, Tu Z, Bitler BG, Garipov A et al. Suppression of nucleotide metabolism underlies the establishment and maintenance of oncogene-induced senescence. Cell Rep 2013; 3: 1252–1265.

    CAS  Google Scholar 

  81. Matsushita S, Ikeda R, Fukushige T, Tajitsu Y, Gunshin K, Okumura H et al. p53R2 is a prognostic factor of melanoma and regulates proliferation and chemosensitivity of melanoma cells. J Dermatol Sci 2012; 68: 19–24.

    CAS  Google Scholar 

  82. Yanamoto S, Kawasaki G, Yamada S, Yoshitomi I, Yoshida H, Mizuno A . Ribonucleotide reductase small subunit p53R2 promotes oral cancer invasion via the E-cadherin/beta-catenin pathway. Oral Oncol 2009; 45: 521–525.

    CAS  Google Scholar 

  83. Yanamoto S, Kawasaki G, Yoshitomi I, Mizuno A . Expression of p53R2, newly p53 target in oral normal epithelium, epithelial dysplasia and squamous cell carcinoma. Cancer Lett 2003; 190: 233–243.

    CAS  Google Scholar 

  84. Okumura H, Natsugoe S, Yokomakura N, Kita Y, Matsumoto M, Uchikado Y et al. Expression of p53R2 is related to prognosis in patients with esophageal squamous cell carcinoma. Clin Cancer Res 2006; 12: 3740–3745.

    CAS  Google Scholar 

  85. Uramoto H, Sugio K, Oyama T, Hanagiri T, Yasumoto K . P53R2, p53 inducible ribonucleotide reductase gene, correlated with tumor progression of non-small cell lung cancer. Anticancer Res 2006; 26: 983–988.

    CAS  Google Scholar 

  86. Jorgensen CL, Ejlertsen B, Bjerre KD, Balslev E, Nielsen DL, Nielsen KV . Gene aberrations of RRM1 and RRM2B and outcome of advanced breast cancer after treatment with docetaxel with or without gemcitabine. BMC Cancer 2013; 13: 541.

    Google Scholar 

  87. Fan H, Huang A, Villegas C, Wright JA . The R1 component of mammalian ribonucleotide reductase has malignancy-suppressing activity as demonstrated by gene transfer experiments. Proc Natl Acad Sci USA 1997; 94: 13181–13186.

    CAS  Google Scholar 

  88. Gautam A, Li ZR, Bepler G . RRM1-induced metastasis suppression through PTEN-regulated pathways. Oncogene 2003; 22: 2135–2142.

    CAS  Google Scholar 

  89. Gautam A, Bepler G . Suppression of lung tumor formation by the regulatory subunit of ribonucleotide reductase. Cancer Res 2006; 66: 6497–6502.

    CAS  Google Scholar 

  90. Xu X, Page JL, Surtees JA, Liu H, Lagedrost S, Lu Y et al. Broad overexpression of ribonucleotide reductase genes in mice specifically induces lung neoplasms. Cancer Res 2008; 68: 2652–2660.

    CAS  Google Scholar 

  91. Bepler G, Sharma S, Cantor A, Gautam A, Haura E, Simon G et al. RRM1 and PTEN as prognostic parameters for overall and disease-free survival in patients with non-small-cell lung cancer. J Clin Oncol 2004; 22: 1878–1885.

    CAS  Google Scholar 

  92. Zheng Z, Chen T, Li X, Haura E, Sharma A, Bepler G . DNA synthesis and repair genes RRM1 and ERCC1 in lung cancer. N Engl J Med 2007; 356: 800–808.

    CAS  Google Scholar 

  93. Gong W, Zhang X, Wu J, Chen L, Li L, Sun J et al. RRM1 expression and clinical outcome of gemcitabine-containing chemotherapy for advanced non-small-cell lung cancer: a meta-analysis. Lung Cancer 2012; 75: 374–380.

    Google Scholar 

  94. Nakahira S, Nakamori S, Tsujie M, Takahashi Y, Okami J, Yoshioka S et al. Involvement of ribonucleotide reductase M1 subunit overexpression in gemcitabine resistance of human pancreatic cancer. Int J Cancer 2007; 120: 1355–1363.

    CAS  Google Scholar 

  95. Ohtaka K, Kohya N, Sato K, Kitajima Y, Ide T, Mitsuno M et al. Ribonucleotide reductase subunit M1 is a possible chemoresistance marker to gemcitabine in biliary tract carcinoma. Oncol Rep 2008; 20: 279–286.

    CAS  Google Scholar 

  96. Reynolds C, Obasaju C, Schell MJ, Li X, Zheng Z, Boulware D et al. Randomized phase III trial of gemcitabine-based chemotherapy with in situ RRM1 and ERCC1 protein levels for response prediction in non-small-cell lung cancer. J Clin Oncol 2009; 27: 5808–5815.

    CAS  Google Scholar 

  97. Akita H, Zheng Z, Takeda Y, Kim C, Kittaka N, Kobayashi S et al. Significance of RRM1 and ERCC1 expression in resectable pancreatic adenocarcinoma. Oncogene 2009; 28: 2903–2909.

    CAS  Google Scholar 

  98. Rodriguez J, Boni V, Hernandez A, Bitarte N, Zarate R, Ponz-Sarvise M et al. Association of RRM1 -37A>C polymorphism with clinical outcome in colorectal cancer patients treated with gemcitabine-based chemotherapy. Eur J Cancer 2011; 47: 839–847.

    CAS  Google Scholar 

  99. Jordheim LP, Seve P, Tredan O, Dumontet C . The ribonucleotide reductase large subunit (RRM1) as a predictive factor in patients with cancer. Lancet Oncol 2011; 12: 693–702.

    CAS  Google Scholar 

  100. Ceppi P, Volante M, Novello S, Rapa I, Danenberg KD, Danenberg PV et al. ERCC1 and RRM1 gene expressions but not EGFR are predictive of shorter survival in advanced non-small-cell lung cancer treated with cisplatin and gemcitabine. Ann Oncol 2006; 17: 1818–1825.

    CAS  Google Scholar 

  101. Dong X, Hao Y, Wei Y, Yin Q, Du J, Zhao X . Response to first-line chemotherapy in patients with non-small cell lung cancer according to RRM1 expression. PLoS One 2014; 9: e92320.

    Google Scholar 

  102. Bepler G, Sommers KE, Cantor A, Li X, Sharma A, Williams C et al. Clinical efficacy and predictive molecular markers of neoadjuvant gemcitabine and pemetrexed in resectable non-small cell lung cancer. J Thorac Oncol 2008; 3: 1112–1118.

    Google Scholar 

  103. Jordheim LP, Guittet O, Lepoivre M, Galmarini CM, Dumontet C . Increased expression of the large subunit of ribonucleotide reductase is involved in resistance to gemcitabine in human mammary adenocarcinoma cells. Mol Cancer Ther 2005; 4: 1268–1276.

    CAS  Google Scholar 

  104. Davidson JD, Ma L, Flagella M, Geeganage S, Gelbert LM, Slapak CA . An increase in the expression of ribonucleotide reductase large subunit 1 is associated with gemcitabine resistance in non-small cell lung cancer cell lines. Cancer Res 2004; 64: 3761–3766.

    CAS  Google Scholar 

  105. Bergman AM, Eijk PP, Ruiz van Haperen VW, Smid K, Veerman G, Hubeek I et al. In vivo induction of resistance to gemcitabine results in increased expression of ribonucleotide reductase subunit M1 as the major determinant. Cancer Res 2005; 65: 9510–9516.

    CAS  Google Scholar 

  106. Bepler G, Kusmartseva I, Sharma S, Gautam A, Cantor A, Sharma A et al. RRM1 modulated in vitro and in vivo efficacy of gemcitabine and platinum in non-small-cell lung cancer. J Clin Oncol 2006; 24: 4731–4737.

    CAS  Google Scholar 

  107. Simon G, Sharma A, Li X, Hazelton T, Walsh F, Williams C et al. Feasibility and efficacy of molecular analysis-directed individualized therapy in advanced non-small-cell lung cancer. J Clin Oncol 2007; 25: 2741–2746.

    CAS  Google Scholar 

  108. Fan H, Villegas C, Wright JA . Ribonucleotide reductase R2 component is a novel malignancy determinant that cooperates with activated oncogenes to determine transformation and malignant potential. Proc Natl Acad Sci USA 1996; 93: 14036–14040.

    CAS  Google Scholar 

  109. Fan H, Villegas C, Huang A, Wright JA . The mammalian ribonucleotide reductase R2 component cooperates with a variety of oncogenes in mechanisms of cellular transformation. Cancer Res 1998; 58: 1650–1653.

    CAS  Google Scholar 

  110. Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE . RNA interference targeting the M2 subunit of ribonucleotide reductase enhances pancreatic adenocarcinoma chemosensitivity to gemcitabine. Oncogene 2004; 23: 1539–1548.

    CAS  Google Scholar 

  111. Zhang K, Hu S, Wu J, Chen L, Lu J, Wang X et al. Overexpression of RRM2 decreases thrombspondin-1 and increases VEGF production in human cancer cells in vitro and in vivo: implication of RRM2 in angiogenesis. Mol Cancer 2009; 8: 11.

    CAS  Google Scholar 

  112. Xue L, Zhou B, Liu X, Heung Y, Chau J, Chu E et al. Ribonucleotide reductase small subunit p53R2 facilitates p21 induction of G1 arrest under UV irradiation. Cancer Res 2007; 67: 16–21.

    CAS  Google Scholar 

  113. Liu X, Zhou B, Xue L, Shih J, Tye K, Lin W et al. Metastasis-suppressing potential of ribonucleotide reductase small subunit p53R2 in human cancer cells. Clin Cancer Res 2006; 12: 6337–6344.

    CAS  Google Scholar 

  114. Liu X, Lai L, Wang X, Xue L, Leora S, Wu J et al. Ribonucleotide reductase small subunit M2B prognoses better survival in colorectal cancer. Cancer Res 2011; 71: 3202–3213.

    CAS  Google Scholar 

  115. Mannava S, Moparthy KC, Wheeler LJ, Natarajan V, Zucker SN, Fink EE et al. Depletion of deoxyribonucleotide pools is an endogenous source of DNA damage in cells undergoing oncogene-induced senescence. Am J Pathol 2013; 182: 142–151.

    CAS  Google Scholar 

  116. Mannava S, Moparthy KC, Wheeler LJ, Leonova KI, Wawrzyniak JA, Bianchi-Smiraglia A et al. Ribonucleotide reductase and thymidylate synthase or exogenous deoxyribonucleosides reduce DNA damage and senescence caused by C-MYC depletion. Aging (Albany NY) 2012; 4: 917–922.

    CAS  Google Scholar 

  117. Reubold TF, Eschenburg S . A molecular view on signal transduction by the apoptosome. Cell Signal 2012; 24: 1420–1425.

    CAS  Google Scholar 

  118. Chandra D, Bratton SB, Person MD, Tian Y, Martin AG, Ayres M et al. Intracellular nucleotides act as critical prosurvival factors by binding to cytochrome C and inhibiting apoptosome. Cell 2006; 125: 1333–1346.

    CAS  Google Scholar 

  119. Aye Y, Long MJ, Stubbe J . Mechanistic studies of semicarbazone triapine targeting human ribonucleotide reductase in vitro and in mammalian cells: tyrosyl radical quenching not involving reactive oxygen species. J Biol Chem 2012; 287: 35768–35778.

    CAS  Google Scholar 

  120. Martin KR, Barrett JC . Reactive oxygen species as double-edged swords in cellular processes: low-dose cell signaling versus high-dose toxicity. Hum Exp Toxicol 2002; 21: 71–75.

    CAS  Google Scholar 

  121. Feig DI, Reid TM, Loeb LA . Reactive oxygen species in tumorigenesis. Cancer Res 1994; 54: 1890s–1894s.

    CAS  Google Scholar 

  122. Lin ZP, Belcourt MF, Cory JG, Sartorelli AC . Stable suppression of the R2 subunit of ribonucleotide reductase by R2-targeted short interference RNA sensitizes p53(-/-) HCT-116 colon cancer cells to DNA-damaging agents and ribonucleotide reductase inhibitors. J Biol Chem 2004; 279: 27030–27038.

    CAS  Google Scholar 

  123. Yanamoto S, Iwamoto T, Kawasaki G, Yoshitomi I, Baba N, Mizuno A . Silencing of the p53R2 gene by RNA interference inhibits growth and enhances 5-fluorouracil sensitivity of oral cancer cells. Cancer Lett 2005; 223: 67–76.

    CAS  Google Scholar 

  124. Yokomakura N, Natsugoe S, Okumura H, Ikeda R, Uchikado Y, Mataki Y et al. Improvement in radiosensitivity using small interfering RNA targeting p53R2 in esophageal squamous cell carcinoma. Oncol Rep 2007; 18: 561–567.

    CAS  Google Scholar 

  125. Guittet O, Tebbi A, Cottet MH, Vesin F, Lepoivre M . Upregulation of the p53R2 ribonucleotide reductase subunit by nitric oxide. Nitric Oxide 2008; 19: 84–94.

    CAS  Google Scholar 

  126. Mansson E, Flordal E, Liliemark J, Spasokoukotskaja T, Elford H, Lagercrantz S et al. Down-regulation of deoxycytidine kinase in human leukemic cell lines resistant to cladribine and clofarabine and increased ribonucleotide reductase activity contributes to fludarabine resistance. Biochem Pharmacol 2003; 65: 237–247.

    CAS  Google Scholar 

  127. Tang H, Xiao G, Behrens C, Schiller J, Allen J, Chow CW et al. A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients. Clin Cancer Res 2013; 19: 1577–1586.

    CAS  Google Scholar 

  128. Ferrandina G, Mey V, Nannizzi S, Ricciardi S, Petrillo M, Ferlini C et al. Expression of nucleoside transporters, deoxycitidine kinase, ribonucleotide reductase regulatory subunits, and gemcitabine catabolic enzymes in primary ovarian cancer. Cancer Chemother Pharmacol 2010; 65: 679–686.

    CAS  Google Scholar 

  129. Itoi T, Sofuni A, Fukushima N, Itokawa F, Tsuchiya T, Kurihara T et al. Ribonucleotide reductase subunit M2 mRNA expression in pretreatment biopsies obtained from unresectable pancreatic carcinomas. J Gastroenterol 2007; 42: 389–394.

    CAS  Google Scholar 

  130. Fisher SB, Patel SH, Bagci P, Kooby DA, El-Rayes BF, Staley CA 3rd et al. An analysis of human equilibrative nucleoside transporter-1, ribonucleoside reductase subunit M1, ribonucleoside reductase subunit M2, and excision repair cross-complementing gene-1 expression in patients with resected pancreas adenocarcinoma: implications for adjuvant treatment. Cancer 2013; 119: 445–453.

    CAS  Google Scholar 

  131. Okumura H, Natsugoe S, Matsumoto M, Mataki Y, Takatori H, Ishigami S et al. The predictive value of p53, p53R2, and p21 for the effect of chemoradiation therapy on oesophageal squamous cell carcinoma. Br J Cancer 2005; 92: 284–289.

    CAS  Google Scholar 

  132. Stover PJ, Weiss RS . Sensitizing cancer cells: is it really all about U? Cancer Cell 2012; 22: 3–4.

    CAS  Google Scholar 

  133. Zhou BB, Elledge SJ . The DNA damage response: putting checkpoints in perspective. Nature 2000; 408: 433–439.

    CAS  Google Scholar 

  134. Shao J, Zhou B, Chu B, Yen Y . Ribonucleotide reductase inhibitors and future drug design. Curr Cancer Drug Targets 2006; 6: 409–431.

    CAS  Google Scholar 

  135. Nocentini G . Ribonucleotide reductase inhibitors: new strategies for cancer chemotherapy. Crit Rev Oncol Hematol 1996; 22: 89–126.

    CAS  Google Scholar 

  136. Stubbe J, van Der Donk WA . Protein radicals in enzyme catalysis. Chem Rev 1998; 98: 705–762.

    CAS  Google Scholar 

  137. Manegold C, Zatloukal P, Krejcy K, Blatter J . Gemcitabine in non-small cell lung cancer (NSCLC). Invest New Drugs 2000; 18: 29–42.

    CAS  Google Scholar 

  138. Stubbe J, van der Donk WA . Ribonucleotide reductases: radical enzymes with suicidal tendencies. Chem Biol 1995; 2: 793–801.

    CAS  Google Scholar 

  139. Wang J, Lohman GJ, Stubbe J . Enhanced subunit interactions with gemcitabine-5'-diphosphate inhibit ribonucleotide reductases. Proc Natl Acad Sci USA 2007; 104: 14324–14329.

    CAS  Google Scholar 

  140. Bonate PL, Arthaud L, Cantrell WR Jr, Stephenson K, Secrist JA 3rd, Weitman S . Discovery and development of clofarabine: a nucleoside analogue for treating cancer. Nat Rev Drug Discov 2006; 5: 855–863.

    CAS  Google Scholar 

  141. Saven A, Burian C, Koziol JA, Piro LD . Long-term follow-up of patients with hairy cell leukemia after cladribine treatment. Blood 1998; 92: 1918–1926.

    CAS  Google Scholar 

  142. Walker S, Palmer S, Erhorn S, Brent S, Dyker A, Ferrie L et al. Fludarabine phosphate for the first-line treatment of chronic lymphocytic leukaemia. Health Technol Assess 2009; 13 (Suppl 1): 35–40.

    Google Scholar 

  143. Cohen A, Hirschhorn R, Horowitz SD, Rubinstein A, Polmar SH, Hong R et al. Deoxyadenosine triphosphate as a potentially toxic metabolite in adenosine deaminase deficiency. Proc Natl Acad Sci USA 1978; 75: 472–476.

    CAS  Google Scholar 

  144. Sigal DS, Miller HJ, Schram ED, Saven A . Beyond hairy cell: the activity of cladribine in other hematologic malignancies. Blood 2010; 116: 2884–2896.

    CAS  Google Scholar 

  145. Avramis VI, Plunkett W . 2-Fluoro-ATP: a toxic metabolite of 9-beta-D-arabinosyl-2-fluoroadenine. Biochem Biophys Res Commun 1983; 113: 35–43.

    CAS  Google Scholar 

  146. Rofougaran R, Vodnala M, Hofer A . Enzymatically active mammalian ribonucleotide reductase exists primarily as an α6β2 octamer. J Biol Chem 2006; 281: 27705–27711.

    CAS  Google Scholar 

  147. Alvarez-Salas LM . Nucleic acids as therapeutic agents. Curr Top Med Chem 2008; 8: 1379–1404.

    CAS  Google Scholar 

  148. Spasokoukotskaja T, Sasvari-Szekely M, Hullan L, Albertioni F, Eriksson S, Staub M . Activation of deoxycytidine kinase by various nucleoside analogues. Adv Exp Med Biol 1998; 431: 641–645.

    CAS  Google Scholar 

  149. Gonzalez H, Leblond V, Azar N, Sutton L, Gabarre J, Binet JL et al. Severe autoimmune hemolytic anemia in eight patients treated with fludarabine. Hematol Cell Ther 1998; 40: 113–118.

    CAS  Google Scholar 

  150. King KM, Damaraju VL, Vickers MF, Yao SY, Lang T, Tackaberry TE et al. A comparison of the transportability, and its role in cytotoxicity, of clofarabine, cladribine, and fludarabine by recombinant human nucleoside transporters produced in three model expression systems. Mol Pharmacol 2006; 69: 346–353.

    CAS  Google Scholar 

  151. Lindemalm S, Liliemark J, Juliusson G, Larsson R, Albertioni F . Cytotoxicity and pharmacokinetics of cladribine metabolite, 2-chloroadenine in patients with leukemia. Cancer Lett 2004; 210: 171–177.

    CAS  Google Scholar 

  152. Ferracin M, Zagatti B, Rizzotto L, Cavazzini F, Veronese A, Ciccone M et al. MicroRNAs involvement in fludarabine refractory chronic lymphocytic leukemia. Mol Cancer 2010; 9: 123.

    Google Scholar 

  153. Pfisterer J, Vergote I, Du Bois A, Eisenhauer E . Combination therapy with gemcitabine and carboplatin in recurrent ovarian cancer. Int J Gynecol Cancer 2005; 15 (Suppl 1): 36–41.

    Google Scholar 

  154. Sandler A, Ettinger DS . Gemcitabine: single-agent and combination therapy in non-small cell lung cancer. Oncologist 1999; 4: 241–251.

    CAS  Google Scholar 

  155. Plunkett W, Liliemark JO, Adams TM, Nowak B, Estey E, Kantarjian H et al. Saturation of 1-beta-D-arabinofuranosylcytosine 5'-triphosphate accumulation in leukemia cells during high-dose 1-beta-D-arabinofuranosylcytosine therapy. Cancer Res 1987; 47: 3005–3011.

    CAS  Google Scholar 

  156. Spasokoukotskaja T, Sasvari-Szekely M, Keszler G, Albertioni F, Eriksson S, Staub M . Treatment of normal and malignant cells with nucleoside analogues and etoposide enhances deoxycytidine kinase activity. Eur J Cancer 1999; 35: 1862–1867.

    CAS  Google Scholar 

  157. Faderl S, Gandhi V, O'Brien S, Bonate P, Cortes J, Estey E et al. Results of a phase 1-2 study of clofarabine in combination with cytarabine (ara-C) in relapsed and refractory acute leukemias. Blood 2005; 105: 940–947.

    CAS  Google Scholar 

  158. Sigmond J, Bergman AM, Leon LG, Loves WJ, Hoebe EK, Peters GJ Staurosporine increases toxicity of gemcitabine in non-small cell lung cancer cells: role of protein kinase C, deoxycytidine kinase and ribonucleotide reductase. Anticancer Drugs 2010; 21: 591–599.

    CAS  Google Scholar 

  159. Hehlmann R, Heimpel H, Hasford J, Kolb HJ, Pralle H, Hossfeld DK et al. Randomized comparison of busulfan and hydroxyurea in chronic myelogenous leukemia: prolongation of survival by hydroxyurea. The German CML Study Group. Blood 1993; 82: 398–407.

    CAS  Google Scholar 

  160. Sterkers Y, Preudhomme C, Lai JL, Demory JL, Caulier MT, Wattel E et al. Acute myeloid leukemia and myelodysplastic syndromes following essential thrombocythemia treated with hydroxyurea: high proportion of cases with 17p deletion. Blood 1998; 91: 616–622.

    CAS  Google Scholar 

  161. Levin VA . The place of hydroxyurea in the treatment of primary brain tumors. Semin Oncol 1992; 19: 34–39.

    CAS  Google Scholar 

  162. Graslund A, Ehrenberg A, Thelander L . Characterization of the free radical of mammalian ribonucleotide reductase. J Biol Chem 1982; 257: 5711–5715.

    CAS  Google Scholar 

  163. Wright JA, Alam TG, McClarty GA, Tagger AY, Thelander L . Altered expression of ribonucleotide reductase and role of M2 gene amplification in hydroxyurea-resistant hamster, mouse, rat, and human cell lines. Somat Cell Mol Genet 1987; 13: 155–165.

    CAS  Google Scholar 

  164. McClarty GA, Chan AK, Engström Y, Wright JA, Thelander L . Elevated expression of M1 and M2 components and drug-induced posttranscriptional modulation of ribonucleotide reductase in a hydroxyurea-resistant mouse cell line. Biochemistry 1987; 26: 8004–8011.

    CAS  Google Scholar 

  165. Temperini C, Innocenti A, Scozzafava A, Supuran CT . N-hydroxyurea—a versatile zinc binding function in the design of metalloenzyme inhibitors. Bioorg Med Chem Lett 2006; 16: 4316–4320.

    CAS  Google Scholar 

  166. Nyholm S, Thelander L, Graslund A . Reduction and loss of the iron center in the reaction of the small subunit of mouse ribonucleotide reductase with hydroxyurea. Biochemistry 1993; 32: 11569–11574.

    CAS  Google Scholar 

  167. Sahlin M, Graslund A, Petersson L, Ehrenberg A, Sjoberg BM . Reduced forms of the iron-containing small subunit of ribonucleotide reductase from Escherichia coli. Biochemistry 1989; 28: 2618–2625.

    CAS  Google Scholar 

  168. Nutting CM, van Herpen CM, Miah AB, Bhide SA, Machiels JP, Buter J et al. Phase II study of 3-AP Triapine in patients with recurrent or metastatic head and neck squamous cell carcinoma. Ann Oncol 2009; 20: 1275–1279.

    CAS  Google Scholar 

  169. Finch RA, Liu M, Grill SP, Rose WC, Loomis R, Vasquez KM et al. Triapine (3-aminopyridine-2-carboxaldehyde- thiosemicarbazone): a potent inhibitor of ribonucleotide reductase activity with broad spectrum antitumor activity. Biochem Pharmacol 2000; 59: 983–991.

    CAS  Google Scholar 

  170. Cory JG, Cory AH, Rappa G, Lorico A, Liu MC, Lin TS et al. Inhibitors of ribonucleotide reductase. Comparative effects of amino- and hydroxy-substituted pyridine-2-carboxaldehyde thiosemicarbazones. Biochem Pharmacol 1994; 48: 335–344.

    CAS  Google Scholar 

  171. Chaston TB, Lovejoy DB, Watts RN, Richardson DR . Examination of the antiproliferative activity of iron chelators: multiple cellular targets and the different mechanism of action of triapine compared with desferrioxamine and the potent pyridoxal isonicotinoyl hydrazone analogue 311. Clin Cancer Res 2003; 9: 402–414.

    CAS  Google Scholar 

  172. Popovic-Bijelic A, Kowol CR, Lind ME, Luo J, Himo F, Enyedy EA et al. Ribonucleotide reductase inhibition by metal complexes of Triapine (3-aminopyridine-2-carboxaldehyde thiosemicarbazone): a combined experimental and theoretical study. J Inorg Biochem 2011; 105: 1422–1431.

    CAS  Google Scholar 

  173. Zhu L, Zhou B, Chen X, Jiang H, Shao J, Yen Y . Inhibitory mechanisms of heterocyclic carboxaldehyde thiosemicabazones for two forms of human ribonucleotide reductase. Biochem Pharmacol 2009; 78: 1178–1185.

    CAS  Google Scholar 

  174. Avolio TM, Lee Y, Feng N, Xiong K, Jin H, Wang M et al. RNA interference targeting the R2 subunit of ribonucleotide reductase inhibits growth of tumor cells in vitro and in vivo. Anticancer Drugs 2007; 18: 377–388.

    CAS  Google Scholar 

  175. Wonganan P, Chung WG, Zhu S, Kiguchi K, Digiovanni J, Cui Z . Silencing of ribonucleotide reductase subunit M1 potentiates the antitumor activity of gemcitabine in resistant cancer cells. Cancer Biol Ther 2012; 13: 908–914.

    CAS  Google Scholar 

  176. Oh YK, Park TG . siRNA delivery systems for cancer treatment. Adv Drug Deliv Rev 2009; 61: 850–862.

    CAS  Google Scholar 

  177. Reischl D, Zimmer A . Drug delivery of siRNA therapeutics: potentials and limits of nanosystems. Nanomedicine 2009; 5: 8–20.

    CAS  Google Scholar 

  178. Lee Y, Vassilakos A, Feng N, Lam V, Xie H, Wang M et al. GTI-2040, an antisense agent targeting the small subunit component (R2) of human ribonucleotide reductase, shows potent antitumor activity against a variety of tumors. Cancer Res 2003; 63: 2802–2811.

    CAS  Google Scholar 

  179. Rahman MA, Amin AR, Wang X, Zuckerman JE, Choi CH, Zhou B et al. Systemic delivery of siRNA nanoparticles targeting RRM2 suppresses head and neck tumor growth. J Control Release 2012; 159: 384–392.

    CAS  Google Scholar 

  180. Duxbury MS, Ito H, Benoit E, Zinner MJ, Ashley SW, Whang EE . Retrovirally mediated RNA interference targeting the M2 subunit of ribonucleotide reductase: a novel therapeutic strategy in pancreatic cancer. Surgery 2004; 136: 261–269.

    Google Scholar 

  181. Reichard P, Baldesten A, Rutberg L . Formation of deoxycytidine phosphates from cytidine phosphates in extracts from Escherichia coli. J Biol Chem 1961; 236: 1150–1157.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Professors Rick Cerione and Jennifer Surtees for helpful discussion and comments on the manuscript. YA acknowledges a faculty development grant from the ACCEL program supported by NSF (SBE-0547373), an Affinito-Stewart grant from the President's Council of Cornell Women and a Milstein sesquicentennial junior faculty fellowship. MJCL acknowledges an HHMI international student predoctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Y Aye or R S Weiss.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aye, Y., Li, M., Long, M. et al. Ribonucleotide reductase and cancer: biological mechanisms and targeted therapies. Oncogene 34, 2011–2021 (2015). https://doi.org/10.1038/onc.2014.155

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.155

This article is cited by

Search

Quick links