Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nuclear PRAS40 couples the Akt/mTORC1 signaling axis to the RPL11-HDM2-p53 nucleolar stress response pathway

Abstract

The ribosomal protein (RP)-HDM2-p53 pathway has been shown to have key roles in oncogene-induced apoptosis and senescence, but the mechanism regulating this pathway remains elusive. The proline-rich Akt substrate of 40 kDa (PRAS40) has recently been identified as a binding partner and inhibitor of the mechanistic (formerly referred to as mammalian) target of rapamycin complex 1 (mTORC1). Although other inhibitors of mTORC1 are known tumor suppressors, PRAS40 promotes cell survival and tumorigenesis. Here we demonstrate that Akt- and mTORC1-mediated phosphorylation of PRAS40 at T246 and S221, respectively, promotes nuclear-specific association of PRAS40 with ribosomal protein L11 (RPL11). Importantly, silencing of PRAS40 induces upregulation of p53 in a manner dependent on RPL11. This effect is rescued by wild-type PRAS40, but not by the RPL11-binding-null PRAS40T246A mutant. We found that PRAS40 negatively regulates the RPL11-HDM2-p53 nucleolar stress response pathway and suppresses induction of p53-mediated cellular senescence. This work identifies nuclear PRAS40 as a dual-input signaling checkpoint that links cell growth and proliferation to inhibition of cellular senescence. These findings may help to explain the protumorigenic effect of PRAS40 and identify the PRAS40–RPL11 complex as a promising target for p53-restorative anticancer drug discovery.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Levine AJ . p53, the cellular gatekeeper for growth and division. Cell 1997; 88: 323–331.

    Article  CAS  Google Scholar 

  2. Pestov DG, Strezoska Z, Lau LF . Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol Cell Biol 2001; 21: 4246–4255.

    Article  CAS  Google Scholar 

  3. Lohrum MA, Ludwig RL, Kubbutat MH, Hanlon M, Vousden KH . Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell 2003; 3: 577–587.

    Article  CAS  Google Scholar 

  4. Zhang Y, Wolf GW, Bhat K, Jin A, Allio T, Burkhart WA et al. Ribosomal protein L11 negatively regulates oncoprotein MDM2 and mediates a p53-dependent ribosomal-stress checkpoint pathway. Mol Cell Biol 2003; 23: 8902–8912.

    Article  CAS  Google Scholar 

  5. Bhat KP, Itahana K, Jin A, Zhang Y . Essential role of ribosomal protein L11 in mediating growth inhibition-induced p53 activation. EMBO J 2004; 23: 2402–2412.

    Article  CAS  Google Scholar 

  6. Macias E, Jin A, Deisenroth C, Bhat K, Mao H, Lindström MS et al. An ARF-independent c-MYC-activated tumor suppression pathway mediated by ribosomal protein-Mdm2 Interaction. Cancer Cell 2010; 18: 231–243.

    Article  CAS  Google Scholar 

  7. Fregoso OI, Das S, Akerman M, Krainer AR . Splicing-factor oncoprotein SRSF1 stabilizes p53 via RPL5 and induces cellular senescence. Mol Cell 2013; 50: 56–66.

    Article  CAS  Google Scholar 

  8. Zhang Y, Lu H . Signaling to p53: ribosomal proteins find their way. Cancer Cell 2009; 16: 369–377.

    Article  CAS  Google Scholar 

  9. Manning BD, Cantley LC . AKT/PKB signaling: navigating downstream. Cell 2007; 129: 1261–1274.

    Article  CAS  Google Scholar 

  10. Laplante M, Sabatini DM . mTOR signaling in growth control and disease. Cell 2012; 149: 274–293.

    Article  CAS  Google Scholar 

  11. Thedieck K, Polak P, Kim ML, Molle KD, Cohen A, Jenö P et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS One 2007; 2: e1217.

    Article  Google Scholar 

  12. Wang L, Harris TE, Roth RA, Lawrence JC Jr . PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J Biol Chem 2007; 282: 20036–20044.

    Article  CAS  Google Scholar 

  13. Sancak Y, Thoreen CC, Peterson TR, Lindquist RA, Kang SA, Spooner E et al. PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase. Mol Cell 2007; 25: 903–915.

    Article  CAS  Google Scholar 

  14. Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH . Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 2007; 9: 316–323.

    Article  CAS  Google Scholar 

  15. Fonseca BD, Smith EM, Lee VH, MacKintosh C, Proud CG . PRAS40 is a target for mammalian target of rapamycin complex 1 and is required for signaling downstream of this complex. J Biol Chem 2007; 282: 24514–24524.

    Article  CAS  Google Scholar 

  16. Oshiro N, Takahashi R, Yoshino K, Tanimura K, Nakashima A, Eguchi S et al. The proline-rich Akt substrate of 40 kDa (PRAS40) is a physiological substrate of mammalian target of rapamycin complex 1. J Biol Chem 2007; 282: 20329–20339.

    Article  CAS  Google Scholar 

  17. Fu H, Subramanian RR, Masters SC . 14-3-3 proteins: structure, function, and regulation. Annu Rev Pharmacol Toxicol 2000; 40: 617–647.

    Article  CAS  Google Scholar 

  18. Harthill JE, Pozuelo Rubio M, Milne FC, MacKintosh C . Regulation of the 14-3-3-binding protein p39 by growth factors and nutrients in rat PC12 pheochromocytoma cells. Biochem J 2002; 368: 565–572.

    Article  CAS  Google Scholar 

  19. Kovacina KS, Park GY, Bae SS, Guzzetta AW, Schaefer E, Birnbaum MJ et al. Identification of a proline-rich Akt substrate as a 14-3-3 binding partner. J Biol Chem 2003; 278: 10189–10194.

    Article  CAS  Google Scholar 

  20. Hsu PP, Kang SA, Rameseder J, Zhang Y, Ottina KA, Lim D et al. The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 2011; 332: 1317–1322.

    Article  CAS  Google Scholar 

  21. Yu Y, Yoon SO, Poulogiannis G, Yang Q, Ma XM, Villén J et al. Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 2011; 332: 1322–1326.

    Article  CAS  Google Scholar 

  22. Yap TA, Walton MI, Hunter LJ, Valenti M, de Haven Brandon A et al. Preclinical pharmacology, antitumor activity, and development of pharmacodynamic markers for the novel, potent AKT inhibitor CCT128930. Mol Cancer Ther 2011; 10: 360–371.

    Article  CAS  Google Scholar 

  23. Cassell A, Freilino ML, Lee J, Barr S, Wang L, Panahandeh MC et al. Targeting TORC1/2 enhances sensitivity to EGFR inhibitors in head and neck cancer preclinical models. Neoplasia 2012; 14: 1005–1014.

    Article  CAS  Google Scholar 

  24. Andersen JN, Sathyanarayanan S, Di Bacco A, Chi A, Zhang T, Chen AH et al. Pathway-based identification of biomarkers for targeted therapeutics: personalized oncology with PI3K pathway inhibitors. Sci Transl Med 2010; 2: 43ra55.

    Google Scholar 

  25. van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997; 277: 805–808.

    Article  CAS  Google Scholar 

  26. Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A et al. A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature 1998; 391: 184–187.

    Article  CAS  Google Scholar 

  27. Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R et al. Peutz–Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 1998; 18: 38–43.

    Article  CAS  Google Scholar 

  28. Makowski L, Hayes DN . Role of LKB1 in lung cancer development. Br J Cancer 2008; 99: 683–688.

    Article  CAS  Google Scholar 

  29. Huang L, Nakai Y, Kuwahara I, Matsumoto K . PRAS40 is a functionally critical target for EWS repression in Ewing sarcoma. Cancer Res 2012; 72: 1260–1269.

    Article  CAS  Google Scholar 

  30. Yu F, Narasimhan P, Saito A, Liu J, Chan PH . Increased expression of a proline-rich Akt substrate (PRAS40) in human copper/zinc-superoxide dismutase transgenic rats protects motor neurons from death after spinal cord injury. J Cereb Blood Flow Metab 2008; 28: 44–52.

    Article  CAS  Google Scholar 

  31. Madhunapantula SV, Sharma A, Robertson GP . PRAS40 deregulates apoptosis in malignant melanoma. Cancer Res 2007; 67: 3626–3636.

    Article  CAS  Google Scholar 

  32. Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 2004; 101: 12130–12135.

    Article  CAS  Google Scholar 

  33. Nascimento EB, Fodor M, van der Zon GC, Jazet IM, Meinders AE, Voshol PJ et al. Insulin-mediated phosphorylation of the proline-rich Akt substrate PRAS40 is impaired in insulin target tissues of high-fat diet-fed rats. Diabetes 2006; 55: 3221–3228.

    Article  CAS  Google Scholar 

  34. Saito A, Narasimhan P, Hayashi T, Okuno S, Ferrand-Drake M, Chan PH . Neuroprotective role of a proline-rich Akt substrate in apoptotic neuronal cell death after stroke: relationships with nerve growth factor. J Neurosci 2004; 24: 1584–1593.

    Article  CAS  Google Scholar 

  35. Saito A, Hayashi T, Okuno S, Nishi T, Chan PH . Modulation of proline-rich akt substrate survival signaling pathways by oxidative stress in mouse brains after transient focal cerebral ischemia. Stroke 2006; 37: 513–517.

    Article  CAS  Google Scholar 

  36. Kim W, Youn H, Seong KM, Yang HJ, Yun YJ, Kwon T et al. PIM1-activated PRAS40 regulates radioresistance in non-small cell lung cancer cells through interplay with FOXO3a, 14-3-3 and protein phosphatases. Radiat Res 2011; 176: 539–552.

    Article  CAS  Google Scholar 

  37. Kim W, Youn H, Kwon T, Kang J, Kim E, Son B et al. PIM1 kinase inhibitors induce radiosensitization in non-small cell lung cancer cells. Pharmacol Res 2013; 70: 90–101.

    Article  CAS  Google Scholar 

  38. Zhang X, Shu L, Hosoi H, Murti KG, Houghton PJ . Predominant nuclear localization of mammalian target of rapamycin in normal and malignant cells in culture. J Biol Chem 2002; 277: 28127–28134.

    Article  CAS  Google Scholar 

  39. Rosner M, Hengstschlager M . Cytoplasmic and nuclear distribution of the protein complexes mTORC1 and mTORC2: rapamycin triggers dephosphorylation and delocalization of the mTORC2 components rictor and sin1. Hum Mol Genet 2008; 17: 2934–2948.

    Article  CAS  Google Scholar 

  40. Li H, Tsang CK, Watkins M, Bertram PG, Zheng XF . Nutrient regulates Tor1 nuclear localization and association with rDNA promoter. Nature 2006; 442: 1058–1061.

    Article  CAS  Google Scholar 

  41. Wei Y, Tsang CK, Zheng XF . Mechanisms of regulation of RNA polymerase III-dependent transcription by TORC1. EMBO J 2009; 28: 2220–2230.

    Article  CAS  Google Scholar 

  42. Nascimento EB, Ouwens DM . PRAS40: target or modulator of mTORC1 signalling and insulin action? Arch Physiol Biochem 2009; 115: 163–175.

    Article  CAS  Google Scholar 

  43. Wiza C, Nascimento EB, Ouwens DM . Role of PRAS40 in Akt and mTOR signaling in health and disease. Am J Physiol Endocrinol Metab 2012; 302: E1453–E1460.

    Article  CAS  Google Scholar 

  44. Wiza C, Nascimento EB, Linssen MM, Maassen JA, Diamant M, Guigas B et al. Proline-rich Akt substrate of 40-kDa contains a nuclear export signal. Cell Signal 2013; 25: 1762–1768.

    Article  CAS  Google Scholar 

  45. Wang L, Harris TE, Lawrence JC Jr . Regulation of proline-rich Akt substrate of 40 kDa (PRAS40) function by mammalian target of rapamycin complex 1 (mTORC1)-mediated phosphorylation. J Biol Chem 2008; 283: 15619–15627.

    Article  CAS  Google Scholar 

  46. Deisenroth C, Zhang Y . Ribosome biogenesis surveillance: probing the ribosomal protein-Mdm2-p53 pathway. Oncogene 2010; 29: 4253–4260.

    Article  CAS  Google Scholar 

  47. Miliani de Marval PL, Zhang Y . The RP-Mdm2-p53 pathway and tumorigenesis. Oncotarget 2011; 2: 234–238.

    Google Scholar 

  48. Lange A, Mills RE, Lange CJ, Stewart M, Devine SE, Corbett AH . Classical nuclear localization signals: definition, function, and interaction with importin alpha. J Biol Chem 2007; 282: 5101–5105.

    Article  CAS  Google Scholar 

  49. Scott MS, Boisvert FM, McDowall MD, Lamond AI, Barton GJ . Characterization and prediction of protein nucleolar localization sequences. Nucleic Acids Res 2010; 38: 7388–7399.

    Article  CAS  Google Scholar 

  50. Scott MS, Troshin PV, Barton GJ . NoD: a Nucleolar localization sequence detector for eukaryotic and viral proteins. BMC Bioinform 2011; 12: 317.

    Article  CAS  Google Scholar 

  51. Chook YM, Suel KE . Nuclear import by karyopherin-betas: recognition and inhibition. Biochim Biophys Acta 2011; 1813: 1593–1606.

    Article  CAS  Google Scholar 

  52. Sasaki M, Kawahara K, Nishio M, Mimori K, Kogo R, Hamada K et al. Regulation of the MDM2-P53 pathway and tumor growth by PICT1 via nucleolar RPL11. Nat Med 2011; 17: 944–951.

    Article  CAS  Google Scholar 

  53. Mooi WJ, Peeper DS . Oncogene-induced cell senescence—halting on the road to cancer. N Engl J Med 2006; 355: 1037–1046.

    Article  CAS  Google Scholar 

  54. Schmitt CA . Cellular senescence and cancer treatment. Biochim Biophys Acta 2007; 1775: 5–20.

    CAS  Google Scholar 

  55. Kuilman T, Michaloglou C, Mooi WJ, Peeper DS . The essence of senescence. Genes Dev 2010; 24: 2463–2479.

    Article  CAS  Google Scholar 

  56. Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 2005; 436: 720–724.

    Article  CAS  Google Scholar 

  57. Patton EE, Widlund HR, Kutok JL, Kopani KR, Amatruda JF, Murphey RD et al. BRAF mutations are sufficient to promote nevi formation and cooperate with p53 in the genesis of melanoma. Curr Biol 2005; 15: 249–254.

    Article  CAS  Google Scholar 

  58. Dhomen N, Reis-Filho JS, da Rocha Dias S, Hayward R, Savage K, Delmas V et al. Oncogenic Braf induces melanocyte senescence and melanoma in mice. Cancer Cell 2009; 15: 294–303.

    Article  CAS  Google Scholar 

  59. Vredeveld LC, Possik PA, Smit MA, Meissl K, Michaloglou C, Horlings HM et al. Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. Genes Dev 2012; 26: 1055–1069.

    Article  CAS  Google Scholar 

  60. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231–241.

    Article  CAS  Google Scholar 

  61. Sato T, Nakashima A, Guo L, Coffman K, Tamanoi F . Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene 2010; 29: 2746–2752.

    Article  CAS  Google Scholar 

  62. Masutomi K, Yu EY, Khurts S, Ben-Porath I, Currier JL, Metz GB et al. Telomerase maintains telomere structure in normal human cells. Cell 2003; 114: 241–253.

    Article  CAS  Google Scholar 

  63. Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 2003; 9: 493–501.

    Article  CAS  Google Scholar 

  64. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–825.

    Article  CAS  Google Scholar 

  65. Ausubel FM . Current Protocols in Molecular Biology. Brooklyn, NY: Media, PA: Greene Publishing Associates; Wiley, order fulfillment, 1987.

    Google Scholar 

  66. Havel LS, Wang CE, Wade B, Huang B, Li S, Li XJ . Preferential accumulation of N-terminal mutant huntingtin in the nuclei of striatal neurons is regulated by phosphorylation. Hum Mol Genet 2011; 20: 1424–1437.

    Article  CAS  Google Scholar 

  67. Xu P, Duong DM, Peng J . Systematical optimization of reverse-phase chromatography for shotgun proteomics. J Proteome Res 2009; 8: 3944–3950.

    Article  CAS  Google Scholar 

  68. Sarbassov DD, Sabatini DM . Redox regulation of the nutrient-sensitive raptor-mTOR pathway and complex. J Biol Chem 2005; 280: 39505–39509.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported in part by NIH predoctoral NRSA F31NS067844 and training grant T32GM008602 (to JJH), NIH U01CA168449 and a Georgia Cancer Coalition Award (to HF) and the Emory University Integrated Cellular Imaging Microscopy Core of the Emory Neuroscience NINDS Core Facilities Grant P30NS055077. We thank Shannon Elf for assistance with plasmid generation, and Anita Corbett and Maureen Powers for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Fu.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havel, J., Li, Z., Cheng, D. et al. Nuclear PRAS40 couples the Akt/mTORC1 signaling axis to the RPL11-HDM2-p53 nucleolar stress response pathway. Oncogene 34, 1487–1498 (2015). https://doi.org/10.1038/onc.2014.91

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2014.91

This article is cited by

Search

Quick links