Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The ARF tumor-suppressor controls Drosha translation to prevent Ras-driven transformation

Abstract

ARF is a multifunctional tumor suppressor that acts as both a sensor of oncogenic stimuli and as a key regulator of ribosome biogenesis. Recently, our group established the DEAD-box RNA helicase and microRNA (miRNA) microprocessor accessory subunit, DDX5, as a critical target of basal ARF function. To identify other molecular targets of ARF, we focused on known interacting proteins of DDX5 in the microprocessor complex. Drosha, the catalytic core of the microprocessor complex, has a critical role in the maturation of specific non-coding RNAs, including miRNAs and ribosomal RNAs (rRNAs). Here, we report that chronic or acute loss of Arf enhanced Drosha protein expression. This induction did not involve Drosha mRNA transcription or protein stability but rather relied on the increased translation of existing Drosha mRNAs. Enhanced Drosha expression did not alter global miRNA production but rather modified expression of a subset of miRNAs in the absence of Arf. Elevated Drosha protein levels were required to maintain the increased rRNA synthesis and cellular proliferation observed in the absence of Arf. Arf-deficient cells transformed by oncogenic RasV12 were dependent on increased Drosha expression as Drosha knockdown was sufficient to inhibit Ras-dependent cellular transformation. Thus, we propose that ARF regulates Drosha mRNA translation to prevent aberrant cell proliferation and Ras-dependent transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Quelle DE, Zindy F, Ashmun RA, Sherr CJ . Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 1995; 83: 993–1000.

    Article  CAS  Google Scholar 

  2. Kamijo T, Weber JD, Zambetti G, Zindy F, Roussel MF, Sherr CJ . Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 1998; 95: 8292–8297.

    Article  CAS  Google Scholar 

  3. Weber JD, Taylor LJ, Roussel MF, Sherr CJ, Bar-Sagi D . Nucleolar Arf sequesters Mdm2 and activates p53. Nat Cell Biol 1999; 1: 20–26.

    Article  CAS  Google Scholar 

  4. Pomerantz J, Schreiber-Agus N, Liegeois NJ, Silverman A, Alland L, Chin L et al. The Ink4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 1998; 92: 713–723.

    Article  CAS  Google Scholar 

  5. Zhang Y, Xiong Y, Yarbrough WG . ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 1998; 92: 725–734.

    Article  CAS  Google Scholar 

  6. Sherr CJ . Divorcing ARF and p53: an unsettled case. Nat Rev Cancer 2006; 6: 663–673.

    Article  CAS  Google Scholar 

  7. Sugimoto M, Kuo ML, Roussel MF, Sherr CJ . Nucleolar Arf tumor suppressor inhibits ribosomal RNA processing. Mol Cell 2003; 11: 415–424.

    Article  CAS  Google Scholar 

  8. Bertwistle D, Sugimoto M, Sherr CJ . Physical and functional interactions of the Arf tumor suppressor protein with nucleophosmin/B23. Mol Cell Biol 2004; 24: 985–996.

    Article  CAS  Google Scholar 

  9. Apicelli AJ, Maggi LB, Hirbe AC, Miceli AP, Olanich ME, Schulte-Winkeler CL et al. A non-tumor suppressor role for basal p19ARF in maintaining nucleolar structure and function. Mol Cell Biol 2008; 28: 1068–1080.

    Article  CAS  Google Scholar 

  10. Brady SN, Yu Y, Maggi LB, Weber JD . ARF impedes NPM/B23 shuttling in an Mdm2-sensitive tumor suppressor pathway. Mol Cell Biol 2004; 24: 9327–9338.

    Article  CAS  Google Scholar 

  11. Saporita AJ, Chang HC, Winkeler CL, Apicelli AJ, Kladney RD, Wang J et al. RNA helicase DDX5 is a p53-independent target of ARF that participates in ribosome biogenesis. Cancer Res 2011; 71: 6708–6717.

    Article  CAS  Google Scholar 

  12. Wu H, Xu H, Miraglia LJ, Crooke ST . Human RNase III is a 160-kDa protein involved in preribosomal RNA processing. J Biol Chem 2000; 275: 36957–36965.

    Article  CAS  Google Scholar 

  13. Denli AM, Tops BB, Plasterk RH, Ketting RF, Hannon GJ . Processing of primary microRNAs by the Microprocessor complex. Nature 2004; 432: 231–235.

    Article  CAS  Google Scholar 

  14. Calin GA, Croce CM . MicroRNA signatures in human cancers. Nat Rev Cancer 2006; 6: 857–866.

    Article  CAS  Google Scholar 

  15. Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003; 425: 415–419.

    Article  CAS  Google Scholar 

  16. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH et al. MicroRNA genes are transcribed by RNA polymerase II. Embo J 2004; 23: 4051–4060.

    Article  CAS  Google Scholar 

  17. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N et al. The Microprocessor complex mediates the genesis of microRNAs. Nature 2004; 432: 235–240.

    Article  CAS  Google Scholar 

  18. Shiohama A, Sasaki T, Noda S, Minoshima S, Shimizu N . Nucleolar localization of DGCR8 and identification of eleven DGCR8-associated proteins. Exp Cell Res 2007; 313: 4196–4207.

    Article  CAS  Google Scholar 

  19. Han J, Lee Y, Yeom KH, Kim YK, Jin H, Kim VN . The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev 2004; 18: 3016–3027.

    Article  CAS  Google Scholar 

  20. Fukuda T, Yamagata K, Fujiyama S, Matsumoto T, Koshida I, Yoshimura K et al. DEAD-box RNA helicase subunits of the Drosha complex are required for processing of rRNA and a subset of microRNAs. Nat Cell Biol 2007; 9: 604–611.

    Article  CAS  Google Scholar 

  21. Kloosterman WP, Plasterk RH . The diverse functions of microRNAs in animal development and disease. Dev Cell 2006; 11: 441–450.

    Article  CAS  Google Scholar 

  22. Merritt WM, Lin YG, Han LY, Kamat AA, Spannuth WA, Schmandt R et al. Dicer, Drosha, and outcomes in patients with ovarian cancer. N Engl J Med 2008; 359: 2641–2650.

    Article  CAS  Google Scholar 

  23. Lin RJ, Lin YC, Chen J, Kuo HH, Chen YY, Diccianni MB et al. microRNA signature and expression of Dicer and Drosha can predict prognosis and delineate risk groups in neuroblastoma. Cancer Res 2010; 70: 7841–7850.

    Article  CAS  Google Scholar 

  24. Sand M, Gambichler T, Skrygan M, Sand D, Scola N, Altmeyer P et al. Expression levels of the microRNA processing enzymes Drosha and dicer in epithelial skin cancer. Cancer Invest 2010; 28: 649–653.

    Article  CAS  Google Scholar 

  25. Sugito N, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, Kurehara H et al. RNASEN regulates cell proliferation and affects survival in esophageal cancer patients. Clin Cancer Res 2006; 12: 7322–7328.

    Article  CAS  Google Scholar 

  26. Muralidhar B, Winder D, Murray M, Palmer R, Barbosa-Morais N, Saini H et al. Functional evidence that Drosha overexpression in cervical squamous cell carcinoma affects cell phenotype and microRNA profiles. J Pathol 2011; 224: 496–507.

    Article  CAS  Google Scholar 

  27. Han J, Pedersen JS, Kwon SC, Belair CD, Kim YK, Yeom KH et al. Posttranscriptional crossregulation between Drosha and DGCR8. Cell 2009; 136: 75–84.

    Article  CAS  Google Scholar 

  28. Lessard F, Morin F, Ivanchuk S, Langlois F, Stefanovsky V, Rutka J et al. The ARF tumor suppressor controls ribosome biogenesis by regulating the RNA polymerase I transcription factor TTF-I. Mol Cell 2010; 38: 539–550.

    Article  CAS  Google Scholar 

  29. Ayrault O, Andrique L, Larsen CJ, Seite P . Human Arf tumor suppressor specifically interacts with chromatin containing the promoter of rRNA genes. Oncogene 2004; 23: 8097–8104.

    Article  CAS  Google Scholar 

  30. Itahana K, Bhat KP, Jin A, Itahana Y, Hawke D, Kobayashi R et al. Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. Mol Cell 2003; 12: 1151–1164.

    Article  CAS  Google Scholar 

  31. Kawagishi H, Nakamura H, Maruyama M, Mizutani S, Sugimoto K, Takagi M et al. ARF suppresses tumor angiogenesis through translational control of VEGFA mRNA. Cancer Res 2010; 70: 4749–4758.

    Article  CAS  Google Scholar 

  32. Diederichs S, Haber DA . Dual role for argonautes in microRNA processing and posttranscriptional regulation of microRNA expression. Cell 2007; 131: 1097–1108.

    Article  CAS  Google Scholar 

  33. Oskowitz AZ, Penfornis P, Tucker A, Prockop DJ, Pochampally R . Drosha regulates hMSCs cell cycle progression through a miRNA independent mechanism. Int J Biochem Cell Biol 2011; 43: 1563–1572.

    Article  CAS  Google Scholar 

  34. Palmero I, Pantoja C, Serrano M . p19ARF links the tumour suppressor p53 to Ras. Nature 1998; 395: 125–126.

    Article  CAS  Google Scholar 

  35. Kamijo T, Zindy F, Roussel MF, Quelle DE, Downing JR, Ashmun RA et al. Tumor suppression at the mouse INK4a locus mediated by the alternative reading frame product p19ARF. Cell 1997; 91: 649–659.

    Article  CAS  Google Scholar 

  36. Maggi LB, Kuchenruether M, Dadey DY, Schwope RM, Grisendi S, Townsend RR et al. Nucleophosmin serves as a rate-limiting nuclear export chaperone for the Mammalian ribosome. Mol Cell Biol 2008; 28: 7050–7065.

    Article  CAS  Google Scholar 

  37. Roussel MF, Theodoras AM, Pagano M, Sherr CJ . Rescue of defective mitogenic signaling by D-type cyclins. Proc Natl Acad Sci USA 1995; 92: 6837–6841.

    Article  CAS  Google Scholar 

  38. Miceli AP, Saporita AJ, Weber JD . Hypergrowth mTORC1 signals translationally activate the ARF tumor suppressor checkpoint. Mol Cell Biol 2012; 32: 348–364.

    Article  CAS  Google Scholar 

  39. Olanich ME, Moss BL, Piwnica-Worms D, Townsend RR, Weber JD . Identification of FUSE-binding protein 1 as a regulatory mRNA-binding protein that represses nucleophosmin translation. Oncogene 2010; 30: 77–86.

    Article  Google Scholar 

  40. Livak KJ, Schmittgen TD . Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25: 402–408.

    Article  CAS  Google Scholar 

  41. Strezoska Z, Pestov DG, Lau LF . Bop1 is a mouse WD40 repeat nucleolar protein involved in 28S and 5. 8S RRNA processing and 60S ribosome biogenesis. Mol Cell Biol 2000; 20: 5516–5528.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Weber lab for their technical input and suggestions. The Children’s Discovery Institute and the Genome Institute at Washington University provided lentiviral knockdown constructs. MJK was supported by the Siteman Cancer Center, Cancer Biology Pathway Training Grant (T32 CA113275). Grants from the National Institutes of Health (R01 CA120436) and Department of Defense Era of Hope Scholar Award (BC075004) to JDW supported this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J D Weber.

Ethics declarations

Competing interests

The authors declare no conflict of interest

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuchenreuther, M., Weber, J. The ARF tumor-suppressor controls Drosha translation to prevent Ras-driven transformation. Oncogene 33, 300–307 (2014). https://doi.org/10.1038/onc.2012.601

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.601

Keywords

This article is cited by

Search

Quick links