Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy

Abstract

Killing cancer cells through the induction of apoptosis is one of the main mechanisms of chemotherapy. However, numerous cancer cells have primary or acquired apoptosis resistance, resulting in chemoresistance. In this study, using a novel chalcone derivative chalcone-24 (Chal-24), we identified a novel anticancer mechanism through autophagy-mediated necroptosis (RIP1- and RIP3-dependent necrosis). Chal-24 potently killed different cancer cells with induction of necrotic cellular morphology while causing no detectable caspase activation. Blocking the necroptosis pathway with either necrostatin-1 or by knockdown of RIP1 and RIP3 effectively blocked the cytotoxicity of Chal-24, suggesting that Chal-24-induced cell death is associated with necroptosis. Chal-24 robustly activated JNK and ERK and blockage of which effectively suppressed Chal-24-induced cytotoxicity. In addition, Chal-24 strongly induced autophagy that is dependent on JNK-mediated phosphorylation of Bcl-2 and Bcl-xL and dissociation of Bcl-2 or Bcl-xL from Beclin-1. Importantly, suppression of autophagy, with either pharmacological inhibitors or small interfering RNAs targeting the essential autophagy components ATG7 and Beclin-1, effectively attenuated Chal-24-induced cell death. Furthermore, we found that autophagy activation resulted in c-IAP1 and c-IAP2 degradation and formation of the Ripoptosome that contributes to necroptosis. These results thus establish a novel mechanism for killing cancer cells that involves autophagy-mediated necroptosis, which may be employed for overcoming chemoresistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Seve P, Dumontet C . Chemoresistance in non-small cell lung cancer. Curr Med Chem Anticancer Agents 2005; 5: 73–88.

    Article  CAS  Google Scholar 

  2. Hanahan D, Weinberg RA . Hallmarks of cancer: the next generation. Cell 2011; 144: 646–674.

    Article  CAS  Google Scholar 

  3. Lonning PE . Molecular basis for therapy resistance. Mol Oncol 2010; 4: 284–300.

    Article  Google Scholar 

  4. Ghavami S, Hashemi M, Ande SR, Yeganeh B, Xiao W, Eshraghi M et al. Apoptosis and cancer: mutations within caspase genes. J Med Genet 2009; 46: 497–510.

    Article  CAS  Google Scholar 

  5. Mor G, Montagna MK, Alvero AB . Modulation of apoptosis to reverse chemoresistance. Methods Mol Biol 2008; 414: 1–12.

    CAS  PubMed  Google Scholar 

  6. Ocker M, Hopfner M . Apoptosis-modulating drugs for improved cancer therapy. Eur Surg Res 2012; 48: 111–120.

    Article  CAS  Google Scholar 

  7. Kreuzaler P, Watson CJ . Killing a cancer: what are the alternatives? Nat Rev Cancer 2012; 12: 411–424.

    Article  CAS  Google Scholar 

  8. Long JS, Ryan KM . New frontiers in promoting tumour cell death: targeting apoptosis, necroptosis and autophagy. Oncogene 2012; 31: 5045–5060.

    Article  CAS  Google Scholar 

  9. Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV et al. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012; 19: 107–120.

    Article  CAS  Google Scholar 

  10. Feoktistova M, Geserick P, Kellert B, Dimitrova DP, Langlais C, Hupe M et al. cIAPs block ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol Cell 2011; 43: 449–463.

    Article  CAS  Google Scholar 

  11. Tenev T, Bianchi K, Darding M, Broemer M, Langlais C, Wallberg F et al. The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol Cell 2011; 43: 432–448.

    Article  CAS  Google Scholar 

  12. Imre G, Larisch S, Rajalingam K . Ripoptosome: a novel IAP-regulated cell death-signalling platform. J Mol Cell Biol 2011; 3: 324–326.

    Article  CAS  Google Scholar 

  13. Han J, Zhong CQ, Zhang DW . Programmed necrosis: backup to and competitor with apoptosis in the immune system. Nat Immunol 2011; 12: 1143–1149.

    Article  CAS  Google Scholar 

  14. Galluzzi L, Vanden Berghe T, Vanlangenakker N, Buettner S, Eisenberg T, Vandenabeele P et al. Programmed necrosis from molecules to health and disease. Int Rev Cell Mol Biol 2011; 289: 1–35.

    Article  CAS  Google Scholar 

  15. Vandenabeele P, Galluzzi L, Vanden Berghe T, Kroemer G . Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat Rev Mol Cell Biol 2010; 11: 700–714.

    Article  CAS  Google Scholar 

  16. Lin Y, Devin A, Rodriguez Y, Liu ZG . Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev 1999; 13: 2514–2526.

    Article  CAS  Google Scholar 

  17. Sun L, Wang H, Wang Z, He S, Chen S, Liao D et al. Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 2012; 148: 213–227.

    Article  CAS  Google Scholar 

  18. Zhao J, Jitkaew S, Cai Z, Choksi S, Li Q, Luo J et al. Mixed lineage kinase domain-like is a key receptor interacting protein 3 downstream component of TNF-induced necrosis. Proc Natl Acad Sci USA 2012; 109: 5322–5327.

    Article  CAS  Google Scholar 

  19. Wang Z, Jiang H, Chen S, Du F, Wang X . The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 2012; 148: 228–243.

    Article  CAS  Google Scholar 

  20. Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ et al. Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 2008; 135: 1311–1323.

    Article  CAS  Google Scholar 

  21. Darding M, Meier P . IAPs: guardians of RIPK1. Cell Death Differ 2012; 19: 58–66.

    Article  CAS  Google Scholar 

  22. Todde V, Veenhuis M, van der Klei IJ . Autophagy: principles and significance in health and disease. Biochim Biophys Acta 2009; 1792: 3–13.

    Article  CAS  Google Scholar 

  23. Mizushima N, Komatsu M . Autophagy: renovation of cells and tissues. Cell 2011; 147: 728–741.

    Article  CAS  Google Scholar 

  24. Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122: 927–939.

    Article  CAS  Google Scholar 

  25. Notte A, Leclere L, Michiels C . Autophagy as a mediator of chemotherapy-induced cell death in cancer. Biochem Pharmacol 2011; 82: 427–434.

    Article  CAS  Google Scholar 

  26. Bonapace L, Bornhauser BC, Schmitz M, Cario G, Ziegler U, Niggli FK et al. Induction of autophagy-dependent necroptosis is required for childhood acute lymphoblastic leukemia cells to overcome glucocorticoid resistance. J Clin Invest 2010; 120: 1310–1323.

    Article  CAS  Google Scholar 

  27. Wu WK, Coffelt SB, Cho CH, Wang XJ, Lee CW, Chan FK et al. The autophagic paradox in cancer therapy. Oncogene 2012; 31: 939–953.

    Article  CAS  Google Scholar 

  28. Shen HM, Codogno P . Autophagic cell death: Loch Ness monster or endangered species? Autophagy 2011; 7: 457–465.

    Article  CAS  Google Scholar 

  29. Srinivasan B, Johnson TE, Lad R, Xing C . Structure-activity relationship studies of chalcone leading to 3-hydroxy-4,3',4',5'-tetramethoxychalcone and its analogues as potent nuclear factor kappaB inhibitors and their anticancer activities. J Med Chem 2009; 52: 7228–7235.

    Article  CAS  Google Scholar 

  30. Wei Y, Pattingre S, Sinha S, Bassik M, Levine B . JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 2008; 30: 678–688.

    Article  CAS  Google Scholar 

  31. Christofferson DE, Yuan J . Cyclophilin A release as a biomarker of necrotic cell death. Cell Death Differ 2010; 17: 1942–1943.

    Article  CAS  Google Scholar 

  32. Shen S, Kepp O, Michaud M, Martins I, Minoux H, Métivier D et al. Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study. Oncogene 2011; 30: 4544–4556.

    Article  CAS  Google Scholar 

  33. Marquez RT, Xu L . Bcl-2:Beclin 1 complex: multiple, mechanisms regulating autophagy/apoptosis toggle switch. Am J Cancer Res 2012; 2: 214–221.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Salazar M, Carracedo A, Salanueva IJ, Hernández-Tiedra S, Lorente M, Egia A et al. Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 2009; 119: 1359–1372.

    Article  CAS  Google Scholar 

  35. Xie CM, Chan WY, Yu S, Zhao J, Cheng CH . Bufalin induces autophagy-mediated cell death in human colon cancer cells through reactive oxygen species generation and JNK activation. Free Radic Biol Med 2011; 51: 1365–1375.

    Article  CAS  Google Scholar 

  36. Young A, Lyons J, Miller AL, Phan VT, Alarcon IR, McCormick F . Ras signaling and therapies. Adv Cancer Res 2009; 102: 1–17.

    Article  CAS  Google Scholar 

  37. Matsuzawa T, Kim BH, Shenoy AR, Kamitani S, Miyake M, Macmicking JD . IFN-gamma elicits macrophage autophagy via the p38 MAPK signaling pathway. J Immunol 2012; 189: 813–818.

    Article  CAS  Google Scholar 

  38. Cagnol S, Chambard JC . ERK and cell death: mechanisms of ERK-induced cell death–apoptosis, autophagy and senescence. FEBS J 2010; 277: 2–21.

    Article  CAS  Google Scholar 

  39. He W, Wang Q, Xu J, Xu X, Padilla MT, Ren G et al. Attenuation of TNFSF10/TRAIL-induced apoptosis by an autophagic survival pathway involving TRAF2- and RIPK1/RIP1-mediated MAPK8/JNK activation. Autophagy 2012; 8: 1811–1821.

    Article  CAS  Google Scholar 

  40. Warmka JK, Solberg EL, Zeliadt NA, Srinivasan B, Charlson AT, Xing C et al. Inhibition of mitogen activated protein kinases increases the sensitivity of A549 lung cancer cells to the cytotoxicity induced by a kava chalcone analog. Biochem Biophys Res Commun 2012; 424: 488–492.

    Article  CAS  Google Scholar 

  41. Vanlangenakker N, Vanden Berghe T, Bogaert P, Laukens B, Zobel K, Deshayes K et al. cIAP1 and TAK1 protect cells from TNF-induced necrosis by preventing RIP1/RIP3-dependent reactive oxygen species production. Cell Death Differ 2011; 18: 656–665.

    Article  CAS  Google Scholar 

  42. Bertrand MJ, Milutinovic S, Dickson KM, Ho WC, Boudreault A, Durkin J et al. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol Cell 2008; 30: 689–700.

    Article  CAS  Google Scholar 

  43. Shiao SL, Ganesan AP, Rugo HS, Coussens LM . Immune microenvironments in solid tumors: new targets for therapy. Genes Dev 2011; 25: 2559–2572.

    Article  CAS  Google Scholar 

  44. Wang X, Ju W, Renouard J, Aden J, Belinsky SA, Lin Y . 17-allylamino-17-demethoxygeldanamycin synergistically potentiates tumor necrosis factor-induced lung cancer cell death by blocking the nuclear factor-kappaB pathway. Cancer Res 2006; 66: 1089–1095.

    Article  CAS  Google Scholar 

  45. Wang X, Chen W, Zeng W, Bai L, Tesfaigzi Y, Belinsky SA et al. Akt-mediated eminent expression of c-FLIP and Mcl-1 confers acquired resistance to TRAIL-induced cytotoxicity to lung cancer cells. Mol Cancer Ther 2008; 7: 1156–1163.

    Article  CAS  Google Scholar 

  46. Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS et al. Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 2008; 4: 151–175.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly supported by grants from NIEHS/NIH (R01ES017328), NCI/NIH (R03CA156301), Chongqing Health Bureau (2012–2–001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C Xing or Y Lin.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, W., Wang, Q., Srinivasan, B. et al. A JNK-mediated autophagy pathway that triggers c-IAP degradation and necroptosis for anticancer chemotherapy. Oncogene 33, 3004–3013 (2014). https://doi.org/10.1038/onc.2013.256

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.256

Keywords

This article is cited by

Search

Quick links