Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Possible involvement of LKB1-AMPK signaling in non-homologous end joining

Abstract

LKB1/STK11 is a tumor suppressor gene responsible for Peutz-Jeghers syndrome, an inherited cancer disorder associated with genome instability. The LKB1 protein functions in the regulation of cell proliferation, polarization and differentiation. Here, we suggest a role of LKB1 in non-homologous end joining (NHEJ), a major DNA double-strand break (DSB) repair pathway. LKB1 localized to DNA ends upon the generation of micro-irradiation and I-SceI endonuclease-induced DSBs. LKB1 inactivation either by RNA interference or by kinase-dead mutation compromised NHEJ-mediated DNA repair by suppressing the accumulation of BRM, a catalytic subunit of the SWI/SNF complex, at DSB sites, which promotes the recruitment of an essential NHEJ factor, KU70. AMPK2, a major substrate of LKB1 and a histone H2B kinase, was recruited to DSBs in an LKB1-dependent manner. AMPK2 depletion and a mutation of H2B that disrupted the AMPK2 phoshorylation site impaired KU70 and BRM recruitment to DSB sites. LKB1 depletion induced the formation of chromosome breaks and radials. These results suggest that LKB1-AMPK signaling controls NHEJ and contributes to genome stability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Richard F, Muleris M, Dutrillaux B . Chromosome instability in lymphocytes from patients affected by or genetically predisposed to colorectal cancer. Cancer Genet Cytogenet 1994; 73: 23–32.

    Article  CAS  PubMed  Google Scholar 

  2. Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 1998; 391: 184–187.

    Article  CAS  PubMed  Google Scholar 

  3. Sanchez-Cespedes M, Parrella P, Esteller M, Nomoto S, Trink B, Engles JM et al. Inactivation of LKB1/STK11 is a common event in adenocarcinomas of the lung. Cancer Res 2002; 62: 3659–3662.

    CAS  PubMed  Google Scholar 

  4. Matsumoto S, Iwakawa R, Takahashi K, Kohno T, Nakanishi Y, Matsuno Y et al. Prevalence and specificity of LKB1 genetic alterations in lung cancers. Oncogene 2007; 26: 5911–5918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wingo SN, Gallardo TD, Akbay EA, Liang MC, Contreras CM, Boren T et al. Somatic LKB1 mutations promote cervical cancer progression. PLoS One 2009; 4: e5137.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Shackelford DB, Shaw RJ . The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 2009; 9: 563–575.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Roy BC, Kohno T, Iwakawa R, Moriguchi T, Kiyono T, Morishita K et al. Involvement of LKB1 in epithelial-mesenchymal transition (EMT) of human lung cancer cells. Lung Cancer 2010; 70: 136–145.

    Article  PubMed  Google Scholar 

  8. Bungard D, Fuerth BJ, Zeng PY, Faubert B, Maas NL, Viollet B et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science 2010; 329: 1201–1205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Marignani PA, Kanai F, Carpenter CL . LKB1 associates with Brg1 and is necessary for Brg1-induced growth arrest. J Biol Chem 2001; 276: 32415–32418.

    Article  CAS  PubMed  Google Scholar 

  10. Osley MA, Shen X . Altering nucleosomes during DNA double-strand break repair in yeast. Trends Genet 2006; 22: 671–677.

    Article  CAS  PubMed  Google Scholar 

  11. van Attikum H, Fritsch O, Gasser SM . Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J. 2007; 26: 4113–4125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Shim EY, Ma JL, Oum JH, Yanez Y, Lee SE . The yeast chromatin remodeler RSC complex facilitates end joining repair of DNA double-strand breaks. Mol Cell Biol 2005; 25: 3934–3944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ogiwara H, Ui A, Otsuka A, Satoh H, Yokomi I, Nakajima S et al. Histone acetylation by CBP and p300 at double-strand break sites facilitates SWI/SNF chromatin remodeling and the recruitment of non-homologous end joining factors. Oncogene 2011; 30: 2135–2146.

    Article  CAS  PubMed  Google Scholar 

  14. Peng G, Yim EK, Dai H, Jackson AP, Burgt I, Pan MR et al. BRIT1/MCPH1 links chromatin remodelling to DNA damage response. Nat Cell Biol 2009; 11: 865–872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Burma S, Chen BP, Chen DJ . Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair (Amst) 2006; 5: 1042–1048.

    Article  CAS  Google Scholar 

  16. Lieber MR . The mechanism of human nonhomologous DNA end joining. J Biol Chem 2008; 283: 1–5.

    Article  CAS  PubMed  Google Scholar 

  17. Blanco R, Iwakawa R, Tang M, Kohno T, Angulo B, Pio R et al. A gene-alteration profile of human lung cancer cell lines. Hum Mutat 2009; 30: 1199–1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S et al. GammaH2AX and cancer. Nat Rev Cancer. 2008; 8: 957–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lan L, Ui A, Nakajima S, Hatakeyama K, Hoshi M, Watanabe R et al. The ACF1 complex is required for DNA double-strand break repair in human cells. Mol Cell 2010; 40: 976–987.

    Article  CAS  PubMed  Google Scholar 

  20. Rodrigue A, Lafrance M, Gauthier MC, McDonald D, Hendzel M, West SC et al. Interplay between human DNA repair proteins at a unique double-strand break in vivo. EMBO J 2006; 25: 222–231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sapkota GP, Deak M, Kieloch A, Morrice N, Goodarzi AA, Smythe C et al. Ionizing radiation induces ataxia telangiectasia mutated kinase (ATM)-mediated phosphorylation of LKB1/STK11 at Thr-366. Biochem J. 2002; 368 (Pt 2): 507–516.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mladenov E, Iliakis G . Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res 2011; 711: 61–72.

    Article  CAS  PubMed  Google Scholar 

  23. Ogiwara H, Kohno T . Essential factors for incompatible DNA end joining at chromosomal DNA double strand breaks in vivo. PLoS One 2011; 6: e28756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Park JH, Park EJ, Lee HS, Kim SJ, Hur SK, Imbalzano AN et al. Mammalian SWI/SNF complexes facilitate DNA double-strand break repair by promoting gamma-H2AX induction. EMBO J 2006; 25: 3986–3997.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Reisman D, Glaros S, Thompson EA . The SWI/SNF complex and cancer. Oncogene 2009; 28: 1653–1668.

    Article  CAS  PubMed  Google Scholar 

  26. Medina PP, Romero OA, Kohno T, Montuenga LM, Pio R, Yokota J et al. Frequent BRG1/SMARCA4-inactivating mutations in human lung cancer cell lines. Hum Mutat 2008; 29: 617–622.

    Article  CAS  PubMed  Google Scholar 

  27. Mehenni H, Gehrig C, Nezu J, Oku A, Shimane M, Rossier C et al. Loss of LKB1 kinase activity in Peutz-Jeghers syndrome, and evidence for allelic and locus heterogeneity. Am J Hum Genet 1998; 63: 1641–1650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hong SP, Leiper FC, Woods A, Carling D, Carlson M . Activation of yeast Snf1 and mammalian AMP-activated protein kinase by upstream kinases. Proc Natl Acad Sci USA 2003; 100: 8839–8843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Woods A, Johnstone SR, Dickerson K, Leiper FC, Fryer LG, Neumann D et al. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr Biol 2003; 13: 2004–2008.

    Article  CAS  PubMed  Google Scholar 

  30. Perez-Cadahia B, Drobic B, Khan P, Shivashankar CC, Davie JR . Current understanding and importance of histone phosphorylation in regulating chromatin biology. Curr Opin Drug Discov Dev 2010; 13: 613–622.

    CAS  Google Scholar 

  31. Dover J, Schneider J, Tawiah-Boateng MA, Wood A, Dean K, Johnston M et al. Methylation of histone H3 by COMPASS requires ubiquitination of histone H2B by Rad6. J Biol Chem 2002; 277: 28368–28371.

    Article  CAS  PubMed  Google Scholar 

  32. Kim J, Guermah M, McGinty RK, Lee JS, Tang ZY, Milne TA et al. RAD6-mediated transcription-coupled H2B ubiquitylation directly stimulates H3K4 methylation in human cells. Cell 2009; 137: 459–471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Downs JA, Allard S, Jobin-Robitaille O, Javaheri A, Auger A, Bouchard N et al. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol Cell 2004; 16: 979–990.

    Article  CAS  PubMed  Google Scholar 

  34. Murr R, Loizou JI, Yang YG, Cuenin C, Li H, Wang ZQ et al. Histone acetylation by Trrap-Tip60 modulates loading of repair proteins and repair of DNA double-strand breaks. Nat Cell Biol 2006; 8: 91–99.

    Article  CAS  PubMed  Google Scholar 

  35. Miller KM, Tjeertes JV, Coates J, Legube G, Polo SE, Britton S et al. Human HDAC1 and HDAC2 function in the DNA-damage response to promote DNA nonhomologous end-joining. Nat Struct Mol Biol 2010; 17: 1144–1151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. van Gent DC, Hoeijmakers JH, Kanaar R . Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2001; 2: 196–206.

    Article  CAS  PubMed  Google Scholar 

  37. Lan L, Nakajima S, Komatsu K, Nussenzweig A, Shimamoto A, Oshima J et al. Accumulation of Werner protein at DNA double-strand breaks in human cells. J Cell Sci 2005; 118 (Pt 18): 4153–4162.

    Article  CAS  PubMed  Google Scholar 

  38. Nakajima S, Lan L, Kanno S, Usami N, Kobayashi K, Mori M et al. Replication-dependent and -independent responses of RAD18 to DNA damage in human cells. J Biol Chem 2006; 281: 34687–34695.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan for Scientific Research on Innovative Areas (22131006 to TK and HO; and 22131005 to AY), from the Japan Society for the Promotion of Science for Young Scientists (B) KAKENHI (23701110 to HO and 24710057 to AU) and Management Expenses Grants from the Government to the National Cancer Center. A part of this work was carried out under the Cooperative Research Project Program of the Institute of Development, Aging and Cancer, Tohoku University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Kohno.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ui, A., Ogiwara, H., Nakajima, S. et al. Possible involvement of LKB1-AMPK signaling in non-homologous end joining. Oncogene 33, 1640–1648 (2014). https://doi.org/10.1038/onc.2013.125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.125

Keywords

This article is cited by

Search

Quick links