Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

miR-143 regulates hexokinase 2 expression in cancer cells

Abstract

Tumor cells activate pathways that facilitate and stimulate glycolysis even in the presence of adequate levels of oxygen in order to satisfy their continuous need of molecules, such as nucleotides, ATP and fatty acids, necessary to support their rapid proliferation. Accordingly, a variety of human tumors are characterized by elevated expression levels of the hexokinase 2 isoform (HK2). Although different molecular mechanisms, including genetic and epigenetic mechanisms, have been suggested to account for the altered expression of HK2 in tumors, the potential role of microRNAs (miRNAs) in the regulation of HK2 expression has not been evaluated. Here, we report that miR-143 inhibits HK2 expression via a conserved miR-143 recognition motif located in the 3′-untranslated region (3′UTR) of HK2 mRNA. We demonstrate that miR143 inhibits HK2 expression both in primary keratinocytes and in head and neck squamous cell carcinoma (HNSCC)-derived cell lines. Importantly, we found that miR-143 inversely correlates with HK2 expression in HNSCC-derived cell lines and in primary tumors. We also report that the miRNA-dependent regulation of hexokinase expression is not limited to HK2 as miR-138 targets HK1 via a specific recognition motif located in its 3′UTR. All these data unveil a new miRNA-dependent mechanism of regulation of hexokinase expression potentially important in the regulation of glucose metabolism of cancer cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Ambros V . The functions of animal microRNAs. Nature 2004; 431: 350–355.

    CAS  Google Scholar 

  2. Kim VN . MicroRNA biogenesis: coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005; 6: 376–385.

    Article  CAS  Google Scholar 

  3. Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell 2009; 136: 215–233.

    Article  CAS  Google Scholar 

  4. Aberdam D, Candi E, Knight RA, Melino G . miRNAs, ‘stemness’ and skin. Trends Biochem Sci 2008; 33: 583–591.

    Article  CAS  Google Scholar 

  5. Lena AM, Shalom-Feuerstein R, Rivetti di Val Cervo P, Aberdam D, Knight RA, Melino G et al. miR-203 represses ‘stemness’ by repressing DeltaNp63. Cell Death Differ 2008; 15: 1187–1195.

    Article  CAS  Google Scholar 

  6. Cook CC, Kim A, Terao S, Gotoh A, Higuchi M . Consumption of oxygen: a mitochondrial-generated progression signal of advanced cancer. Cell Death Dis 2012; 3: e258.

    Article  CAS  Google Scholar 

  7. Bhatnagar N, Li X, Padi SK, Zhang Q, Tang MS, Guo B . Downregulation of miR-205 and miR-31 confers resistance to chemotherapy-induced apoptosis in prostate cancer cells. Cell Death Dis 2010; 1: e105.

    Article  CAS  Google Scholar 

  8. Morton SU, Scherz PJ, Cordes KR, Ivey KN, Stainier DY, Srivastava D . microRNA-138 modulates cardiac patterning during embryonic development. Proc Natl Acad Sci USA 2008; 105: 17830–17835.

    Article  CAS  Google Scholar 

  9. Siegel G, Obernosterer G, Fiore R, Oehmen M, Bicker S, Christensen M et al. A functional screen implicates microRNA-138–dependent regulation of the depalmitoylation enzyme APT1 in dendritic spine morphogenesis. Nat Cell Biol 2009; 11: 705–716.

    Article  CAS  Google Scholar 

  10. Eskildsen T, Taipaleenmaki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY et al. MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci USA 2011; 108: 6139–6144.

    Article  Google Scholar 

  11. Wang C, Li Q . Identification of differentially expressed microRNAs during the development of Chinese murine mammary gland. J Genet Genomics 2007; 34: 966–973.

    Article  CAS  Google Scholar 

  12. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA 2006; 103: 2257–2261.

    Article  CAS  Google Scholar 

  13. Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N, Akao Y . Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology 2009; 77: 12–21.

    Article  CAS  Google Scholar 

  14. Akao Y, Nakagawa Y, Kitade Y, Kinoshita T, Naoe T . Downregulation of microRNAs-143 and -145 in B-cell malignancies. Cancer Sci 2007; 98: 1914–1920.

    Article  CAS  Google Scholar 

  15. Borralho PM, Simoes AE, Gomes SE, Lima RT, Carvalho T, Ferreira DM et al. miR-143 overexpression impairs growth of human colon carcinoma xenografts in mice with induction of apoptosis and inhibition of proliferation. PLoS One 2011; 6: e23787.

    Article  CAS  Google Scholar 

  16. Noguchi S, Mori T, Hoshino Y, Maruo K, Yamada N, Kitade Y et al. MicroRNA-143 functions as a tumor suppressor in human bladder cancer T24 cells. Cancer Lett 2011; 307: 211–220.

    Article  CAS  Google Scholar 

  17. Boettger T, Beetz N, Kostin S, Schneider J, Kruger M, Hein L et al. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest 2009; 119: 2634–2647.

    Article  CAS  Google Scholar 

  18. Warburg O . On respiratory impairment in cancer cells. Science 1956; 124: 269–270.

    CAS  PubMed  Google Scholar 

  19. Mathupala SP, Ko YH, Pedersen PL . The pivotal roles of mitochondria in cancer: Warburg and beyond and encouraging prospects for effective therapies. Biochim Biophys Acta 2010; 1797: 1225–1230.

    Article  CAS  Google Scholar 

  20. Kroemer G, Pouyssegur J . Tumor cell metabolism: cancer's Achilles’ heel. Cancer Cell 2008; 13: 472–482.

    Article  CAS  Google Scholar 

  21. Israel M, Schwartz L . The metabolic advantage of tumor cells. Mol Cancer 2011; 10: 70.

    Article  CAS  Google Scholar 

  22. Hsu PP, Sabatini DM . Cancer cell metabolism: Warburg and beyond. Cell 2008; 134: 703–707.

    Article  CAS  Google Scholar 

  23. Munoz-Pinedo C, El Mjiyad N, Ricci JE . Cancer metabolism: current perspectives and future directions. Cell Death Dis 2012; 3: e248.

    Article  CAS  Google Scholar 

  24. Mathupala SP, Ko YH, Pedersen PL . Hexokinase-2 bound to mitochondria: cancer's stygian link to the ″Warburg Effect″ and a pivotal target for effective therapy. Semin Cancer Biol 2009; 19: 17–24.

    Article  CAS  Google Scholar 

  25. Mathupala SP, Rempel A, Pedersen PL . Glucose catabolism in cancer cells. Isolation, sequence, and activity of the promoter for type II hexokinase. J Biol Chem 1995; 270: 16918–16925.

    Article  CAS  Google Scholar 

  26. Mathupala SP, Rempel A, Pedersen PL . Glucose catabolism in cancer cells: identification and characterization of a marked activation response of the type II hexokinase gene to hypoxic conditions. J Biol Chem 2001; 276: 43407–43412.

    Article  CAS  Google Scholar 

  27. Tsai HJ, Wilson JE . Functional organization of mammalian hexokinases: both N- and C-terminal halves of the rat type II isozyme possess catalytic sites. Arch Biochem Biophys 1996; 329: 17–23.

    Article  CAS  Google Scholar 

  28. Wolf A, Agnihotri S, Micallef J, Mukherjee J, Sabha N, Cairns R et al. Hexokinase 2 is a key mediator of aerobic glycolysis and promotes tumor growth in human glioblastoma multiforme. J Exp Med 2011; 208: 313–326.

    Article  CAS  Google Scholar 

  29. Pedersen PL . Voltage dependent anion channels (VDACs): a brief introduction with a focus on the outer mitochondrial compartment's roles together with hexokinase-2 in the ″Warburg effect″ in cancer. J Bioenerg Biomembr 2008; 40: 123–126.

    Article  CAS  Google Scholar 

  30. Rempel A, Mathupala SP, Griffin CA, Hawkins AL, Pedersen PL . Glucose catabolism in cancer cells: amplification of the gene encoding type II hexokinase. Cancer Res 1996; 56: 2468–2471.

    CAS  PubMed  Google Scholar 

  31. Goel A, Mathupala SP, Pedersen PL . Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type II hexokinase gene expression. J Biol Chem 2003; 278: 15333–15340.

    Article  CAS  Google Scholar 

  32. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37: 495–500.

    Article  CAS  Google Scholar 

  33. Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW . p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 2006; 9: 45–56.

    Article  CAS  Google Scholar 

  34. Kolev V, Mandinova A, Guinea-Viniegra J, Hu B, Lefort K, Lambertini C et al. EGFR signalling as a negative regulator of Notch1 gene transcription and function in proliferating keratinocytes and cancer. Nat Cell Biol 2008; 10: 902–911.

    Article  CAS  Google Scholar 

  35. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS et al. Integrative genomic profiling of human prostate cancer. Cancer Cell 2010; 18: 11–22.

    Article  CAS  Google Scholar 

  36. Davis-Dusenbery BN, Chan MC, Reno KE, Weisman AS, Layne MD, Lagna G et al. down-regulation of Kruppel-like factor-4 (KLF4) by microRNA-143/145 is critical for modulation of vascular smooth muscle cell phenotype by transforming growth factor-beta and bone morphogenetic protein 4. J Biol Chem 2011; 286: 28097–28110.

    Article  CAS  Google Scholar 

  37. Mitomo S, Maesawa C, Ogasawara S, Iwaya T, Shibazaki M, Yashima-Abo A et al. Downregulation of miR-138 is associated with overexpression of human telomerase reverse transcriptase protein in human anaplastic thyroid carcinoma cell lines. Cancer Sci 2008; 99: 280–286.

    Article  CAS  Google Scholar 

  38. Liu X, Jiang L, Wang A, Yu J, Shi F, Zhou X . MicroRNA-138 suppresses invasion and promotes apoptosis in head and neck squamous cell carcinoma cell lines. Cancer Lett 2009; 286: 217–222.

    Article  CAS  Google Scholar 

  39. Jiang L, Dai Y, Liu X, Wang C, Wang A, Chen Z et al. Identification and experimental validation of G protein alpha inhibiting activity polypeptide 2 (GNAI2) as a microRNA-138 target in tongue squamous cell carcinoma. Hum Genet 2011; 129: 189–197.

    Article  CAS  Google Scholar 

  40. Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ et al. Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 2005; 353: 2012–2024.

    Article  CAS  Google Scholar 

  41. Avissar M, Christensen BC, Kelsey KT, Marsit CJ . MicroRNA expression ratio is predictive of head and neck squamous cell carcinoma. Clin Cancer Res 2009; 15: 2850–2855.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Medical Research Council, UK; grants from ‘Alleanza contro il Cancro’ Grant (ACC12), MIUR/PRIN (20078P7T3K_001)/FIRB (RBIP06LCA9_0023, RBIP06LCA9_0C), AIRC grant no. 5471; 2011-IG11955), Telethon Grant GGPO9133 to GM, MIUR/PRIN 2008MRLSNZ_004, AIRC 5xmille (no. 9979), RF06 c.73, RF08 c.15, RF07 c.57 awarded to GM and EC. Research described in this article was also supported by Ric. Finalizzata 08-GIOV_RIC awarded to AP.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Peschiaroli or G Melino.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peschiaroli, A., Giacobbe, A., Formosa, A. et al. miR-143 regulates hexokinase 2 expression in cancer cells. Oncogene 32, 797–802 (2013). https://doi.org/10.1038/onc.2012.100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.100

Keywords

This article is cited by

Search

Quick links