Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

A high-throughput screen identifies PARP1/2 inhibitors as a potential therapy for ERCC1-deficient non-small cell lung cancer

Abstract

Excision repair cross-complementation group 1 (ERCC1) is a DNA repair enzyme that is frequently defective in non-small cell lung cancer (NSCLC). Although low ERCC1 expression correlates with platinum sensitivity, the clinical effectiveness of platinum therapy is limited, highlighting the need for alternative treatment strategies. To discover new mechanism-based therapeutic strategies for ERCC1-defective tumours, we performed high-throughput drug screens in an isogenic NSCLC model of ERCC1 deficiency and dissected the mechanism underlying ERCC1-selective effects by studying molecular biomarkers of tumour cell response. The high-throughput screens identified multiple clinical poly (ADP-ribose) polymerase 1 and 2 (PARP1/2) inhibitors, such as olaparib (AZD-2281), niraparib (MK-4827) and BMN 673, as being selective for ERCC1 deficiency. We observed that ERCC1-deficient cells displayed a significant delay in double-strand break repair associated with a profound and prolonged G2/M arrest following PARP1/2 inhibitor treatment. Importantly, we found that ERCC1 isoform 202, which has recently been shown to mediate platinum sensitivity, also modulated PARP1/2 sensitivity. A PARP1/2 inhibitor-synthetic lethal siRNA screen revealed that ERCC1 deficiency was epistatic with homologous recombination deficiency. However, ERCC1-deficient cells did not display a defect in RAD51 foci formation, suggesting that ERCC1 might be required to process PARP1/2 inhibitor-induced DNA lesions before DNA strand invasion. PARP1 silencing restored PARP1/2 inhibitor resistance in ERCC1-deficient cells but had no effect in ERCC1-proficient cells, supporting the hypothesis that PARP1 might be required for the ERCC1 selectivity of PARP1/2 inhibitors. This study suggests that PARP1/2 inhibitors as a monotherapy could represent a novel therapeutic strategy for NSCLC patients with ERCC1-deficient tumours.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ . Cancer statistics 2009. Cancer J Clin 2009; 59: 225–249.

    Article  Google Scholar 

  2. Andre F, McShane LM, Michiels S, Ransohoff DF, Altman DG, Reis-Filho JS et al. Biomarker studies: a call for a comprehensive biomarker study registry. Nat Rev Clin Oncol 2011; 8: 171–176.

    Article  PubMed  Google Scholar 

  3. Curtin NJ . DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer 2012; 12: 801–817.

    Article  CAS  PubMed  Google Scholar 

  4. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 2004; 350: 2129–2139.

    Article  CAS  PubMed  Google Scholar 

  5. Camidge DR, Bang YJ, Kwak EL, Iafrate AJ, Varella-Garcia M, Fox SB et al. Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol 2012; 13: 1011–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Olaussen KA, Dunant A, Fouret P, Brambilla E, Andre F, Haddad V et al. DNA repair by ERCC1 in non-small-cell lung cancer and cisplatin-based adjuvant chemotherapy. N Engl J Med 2006; 355: 983–991.

    Article  CAS  PubMed  Google Scholar 

  7. Postel-Vinay S, Vanhecke E, Olaussen KA, Lord CJ, Ashworth A, Soria JC . The potential of exploiting DNA-repair defects for optimizing lung cancer treatment. Nat Rev Clin Oncol 2012; 9: 144–155.

    Article  CAS  PubMed  Google Scholar 

  8. Simon GR, Schell MJ, Begum M, Kim J, Chiappori A, Haura E et al. Preliminary indication of survival benefit from ERCC1 and RRM1-tailored chemotherapy in patients with advanced nonsmall cell lung cancer: evidence from an individual patient analysis. Cancer 2012; 118: 2525–2531.

    Article  CAS  PubMed  Google Scholar 

  9. Vilmar AC, Santoni-Rugiu E, Sorensen JB . ERCC1 and histopathology in advanced NSCLC patients randomized in a large multicenter phase III trial. Ann Oncol 2010; 21: 1817–1824.

    Article  CAS  PubMed  Google Scholar 

  10. Fagbemi AF, Orelli B, Scharer OD . Regulation of endonuclease activity in human nucleotide excision repair. DNA Repair 2011; 10: 722–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kirschner K, Melton DW . Multiple roles of the ERCC1-XPF endonuclease in DNA repair and resistance to anticancer drugs. Anticancer Res 2010; 30: 3223–3232.

    CAS  PubMed  Google Scholar 

  12. Tripsianes K, Folkers G, Ab E, Das D, Odijk H, Jaspers NG et al. The structure of the human ERCC1/XPF interaction domains reveals a complementary role for the two proteins in nucleotide excision repair. Structure 2005; 13: 1849–1858.

    Article  CAS  PubMed  Google Scholar 

  13. Bergstralh DT, Sekelsky J . Interstrand crosslink repair: can XPF-ERCC1 be let off the hook? Trends Genet 2008; 24: 70–76.

    Article  CAS  PubMed  Google Scholar 

  14. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005; 434: 917–921.

    Article  CAS  PubMed  Google Scholar 

  15. Friboulet L, Olaussen KA, Pignon JP, Shepherd FA, Tsao M, Graziano S et al. ERCC1 isoform expression and DNA repair in non-small cell lung cancer. N Engl J Med 2013; 368: 1101–1110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang YW, Regairaz M, Seiler JA, Agama KK, Doroshow JH, Pommier Y . Poly(ADP-ribose) polymerase and XPF-ERCC1 participate in distinct pathways for the repair of topoisomerase I-induced DNA damage in mammalian cells. Nucleic Acids Res 2011; 39: 3607–3620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wang B, Chu D, Feng Y, Xin Y, Myers P, Post L et al. Novel PARP inhibitors with potent antitumor activity as single-agent and combination therapies. Mol Cancer Ther 2009; 8 (Suppl 12): A121.

    Article  Google Scholar 

  18. Patterson M, Murray J, Curtin NJ . Stability of PARP inhibition by BMN 673 in human PBMCs and Leukaemic Cell Cultures. Eur J Cancer 2012; 48 (Suppl 6): 106 (Abstract 348).

    Article  Google Scholar 

  19. Turner NC, Lord CJ, Iorns E, Brough R, Swift S, Elliott R et al. A synthetic lethal siRNA screen identifying genes mediating sensitivity to a PARP inhibitor. Embo J 2008; 27: 1368–1377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH et al. Trapping of PARP1 and PARP2 by Clinical PARP Inhibitors. Cancer Res 2012; 72: 5588–5599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kedar PS, Stefanick DF, Horton JK, Wilson SH . Increased PARP-1 association with DNA in alkylation damaged, PARP-inhibited mouse fibroblasts. Mol Cancer Res 2012; 10: 360–368.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yin M, Yan J, Martinez-Balibrea E, Graziano F, Lenz HJ, Kim HJ et al. ERCC1 and ERCC2 polymorphisms predict clinical outcomes of oxaliplatin-based chemotherapies in gastric and colorectal cancer: a systemic review and meta-analysis. Clin Cancer Res 2011; 17: 1632–1640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Langer CJ . Exploring biomarkers in head and neck cancer. Cancer 2012; 118: 3882–3892.

    Article  CAS  PubMed  Google Scholar 

  24. Vilmar AC, Sorensen JB . Customising chemotherapy in advanced nonsmall cell lung cancer: daily practice and perspectives. Eur Respir Rev 2011; 20: 45–52.

    Article  CAS  PubMed  Google Scholar 

  25. Metzger R, Bollschweiler E, Holscher AH, Warnecke-Eberz U . ERCC1: impact in multimodality treatment of upper gastrointestinal cancer. Future Oncol 2010; 6: 1735–1749.

    Article  CAS  PubMed  Google Scholar 

  26. Steffensen KD, Waldstrom M, Jakobsen A . The relationship of platinum resistance and ERCC1 protein expression in epithelial ovarian cancer. Int J Gynecol Cancer 2009; 19: 820–825.

    Article  PubMed  Google Scholar 

  27. Chen S, Zhang J, Wang R, Luo X, Chen H . The platinum-based treatments for advanced non-small cell lung cancer, is low/negative ERCC1 expression better than high/positive ERCC1 expression? A meta-analysis. Lung cancer 2010; 70: 63–70.

    Article  PubMed  Google Scholar 

  28. Lord RV, Brabender J, Gandara D, Alberola V, Camps C, Domine M et al. Low ERCC1 expression correlates with prolonged survival after cisplatin plus gemcitabine chemotherapy in non-small cell lung cancer. Clin Cancer Res 2002; 8: 2286–2291.

    CAS  PubMed  Google Scholar 

  29. Rehman FL, Lord CJ, Ashworth A . Synthetic lethal approaches to breast cancer therapy. Nat Rev Clin Oncol 2010; 7: 718–724.

    Article  CAS  PubMed  Google Scholar 

  30. Johnson N, Li YC, Walton ZE, Cheng KA, Li D, Rodig SJ et al. Compromised CDK1 activity sensitizes BRCA-proficient cancers to PARP inhibition. Nat Med 2011; 17: 875–882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sijbers AM, van der Spek PJ, Odijk H, van den Berg J, van Duin M, Westerveld A et al. Mutational analysis of the human nucleotide excision repair gene ERCC1. Nucleic Acids Res 1996; 24: 3370–3380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dabholkar M, Vionnet J, Parker R, Bostickbruton F, Dobbins A, Reed E . Expression of an alternatively spliced ercc1 messenger-RNA species, is related to reduced DNA-repair efficiency in human T-lymphocytes. Oncol Rep 1995; 2: 209–214.

    CAS  PubMed  Google Scholar 

  33. Sun Y, Li T, Ma K, Tian Z, Zhu Y, Chen F et al. The impacts of ERCC1 gene exon VIII alternative splicing on cisplatin-resistance in ovarian cancer cells. Cancer Invest 2009; 27: 891–897.

    Article  CAS  PubMed  Google Scholar 

  34. Cheng H, Zhang Z, Borczuk A, Powell CA, Balajee AS, Lieberman HB et al. PARP inhibition selectively increases sensitivity to cisplatin in ERCC1-low non-small cell lung cancer cells. Carcinogenesis 2013; 34: 739–749.

    Article  CAS  PubMed  Google Scholar 

  35. Niedernhofer LJ, Essers J, Weeda G, Beverloo B, de Wit J, Muijtjens M et al. The structure-specific endonuclease Ercc1-Xpf is required for targeted gene replacement in embryonic stem cells. Embo J 2001; 20: 6540–6549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Langelier MF, Planck JL, Roy S, Pascal JM . Crystal structures of poly(ADP-ribose) polymerase-1 (PARP-1) zinc fingers bound to DNA: structural and functional insights into DNA-dependent PARP-1 activity. J Biol Chem 2011; 286: 10690–10701.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Langelier MF, Planck JL, Roy S, Pascal JM . Structural basis for DNA damage-dependent poly(ADP-ribosyl)ation by human PARP-1. Science 2012; 336: 728–732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bajrami I, Kigozi A, Van Weverwijk A, Brough R, Frankum J, Lord CJ et al. Synthetic lethality of PARP and NAMPT inhibition in triple-negative breast cancer cells. EMBO Mol Med 2012; 4: 1087–1096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Graeser M, McCarthy A, Lord CJ, Savage K, Hills M, Salter J et al. A marker of homologous recombination predicts pathologic complete response to neoadjuvant chemotherapy in primary breast cancer. Clin Cancer Res 2010; 16: 6159–6168.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Edwards SL, Brough R, Lord CJ, Natrajan R, Vatcheva R, Levine DA et al. Resistance to therapy caused by intragenic deletion in BRCA2. Nature 2008; 451: 1111–1115.

    Article  CAS  PubMed  Google Scholar 

  41. Lord CJ, Martin SA, Ashworth A . RNA interference screening demystified. J Clin Pathol 2009; 62: 195–200.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank David Roberston and Marieke Aarts for assistance with confocal microscopy and FACS analysis, and Jerry Shen and Len Post at Biomarin for the provision of BMN 673. We also acknowledge NHS funding to the NIHR Royal Marsden Hospital BRC. This work was supported by grants from Cancer Research UK and The European Union as part of the FP7 teams ‘DDResponse’ and ‘Eurocan’. SPV is supported by a Translational Research Fellowship from the European Society of Medical Oncology (2011 and 2012) and by funding from the Institut National du Cancer: Bourse pour la Formation à la Recherche Translationnelle (2011)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to C J Lord or A Ashworth.

Ethics declarations

Competing interests

AA and CJL are inventors on patents describing the use of PARP inhibitors and may benefit from the ICR ‘Rewards to inventors scheme’. All other authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies this paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Postel-Vinay, S., Bajrami, I., Friboulet, L. et al. A high-throughput screen identifies PARP1/2 inhibitors as a potential therapy for ERCC1-deficient non-small cell lung cancer. Oncogene 32, 5377–5387 (2013). https://doi.org/10.1038/onc.2013.311

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2013.311

Keywords

This article is cited by

Search

Quick links