Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

SARA and RNF11 interact with each other and ESCRT-0 core proteins and regulate degradative EGFR trafficking

Abstract

Smad anchor for receptor activation (SARA) is highly enriched on endocytic membranes via binding to phosphatidylinositol 3-phosphates through its FYVE (Fab1p-YOTB-Vps27p-EEA1) domain. SARA was originally identified as a protein that recruits non-phosphorylated SMAD2/3 to the activated TGFβ receptors for phosphorylation, but later reports suggested a regulatory role in endocytic trafficking. Here we demonstrate that the ubiquitin ligase RNF11 is a SARA-interacting protein residing on early and late endosomes, as well as the fast recycling compartment. RNF11 and SARA interact with the ESCRT-0 subunits STAM2 and Eps15b, but only RNF11 associates with the core subunit Hrs. Both gain- and loss-of-function perturbation of RNF11 and SARA levels result in delayed degradation of epidermal growth factor (EGF)-activated EGF receptor (EGFR), while loss-of-function sustained/enhanced EGF-induced ERK1/2 phosphorylation. These findings suggest that RNF11 and SARA are functional components of the ESCRT-0 complexes. Moreover, SARA interacts with clathrin, the ESCRT-I subunit Tsg101 and ubiquitinated cargo exhibiting all the properties of Hrs concerning ESCRT-0 function, indicating that it could substitute Hrs in some ESCRT-0 complexes. These results suggest that RNF11 and SARA participate structurally and functionally in the ESCRT-dependent lysosomal degradation of receptors. As a consequence, the negative influence that perturbation of RNF11 and SARA levels exerts on the lysosomal degradation of EGFRs could underscore the reported overexpression of RNF11 in several cancers. In these cancers, deficient termination of the oncogenic signaling of mutated receptors, such as the EGFRs, through suboptimal lysosomal degradation could contribute to the process of malignant transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Conner S, Schmid S . Regulated portals of entry into the cell. Nature 2003; 422: 37–44.

    Article  CAS  PubMed  Google Scholar 

  2. Tsukazaki T, Chiang TA, Davison AF, Attisano L, Wrana J . SARA, a FYVE domain protein that recruits Smad2 to the TGFβ receptor. Cell 1998; 95: 779–791.

    Article  CAS  PubMed  Google Scholar 

  3. Panopoulou E, Gillooly DJ, Wrana JL, Zerial M, Stenmark H, Murphy C et al. Early endosomal regulation of smad-dependent signaling in endothelial cells. J Biol Chem 2002; 277: 18046–18052.

    Article  CAS  PubMed  Google Scholar 

  4. Bennett D, Alphey L . PP1 binds sara and negatively regulates dpp signaling in drosophila melanogaster. Nat Genet 2002; 31: 419–423.

    Article  CAS  PubMed  Google Scholar 

  5. Hu Y, Chuang JZ, Xu K, McGraw TG, Sung CH . Sara a FYVE domain protein, affects Rab5-mediated endocytosis. J Cell Sci 2002; 115 (Pt 24): 4755–4763.

    Article  CAS  PubMed  Google Scholar 

  6. Chuang JZ, Zhao Y, Sung CH . SARA-regulated vesicular targeting underlies formation of the light-sensing organelle in mammalian rods. Cell 2007; 130: 535–547.

    Article  CAS  PubMed  Google Scholar 

  7. Mu FT, Callaghan JM, Steele-Mortimer O, Stenmark H, Parton RG, Campbell PL et al. EEA1, an early endosome associated protein. EEA1 is a conserved alpha-helical peripheral membrane protein flanked cy cysteine 'fingers' and contains a calmodulin-binding IQ motif. J Biol Chem 1995; 270: 13503–13511.

    Article  CAS  PubMed  Google Scholar 

  8. Simonsen A, Lippe R, Christoforidis S, Gaullier J-M, Brech A, Callaghan J et al. EEA1 links PI(3)K function to rab5 regulation of endosome fusion. Nature 1998; 394: 494–498.

    Article  CAS  PubMed  Google Scholar 

  9. Nielsen E, Christoforidis S, Uttenweiler-Joseph S, Miaczynska M, Dewitte F, Wilm M et al. Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J Cell Biol 2000; 151: 601–612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chavrier P, Parton RG, Hauri HP, Simons K, Zerial M . Localization of low molecular weight GTP binding proteins to exocytic and endocytic compartments. Cell 1990; 62: 317–329.

    Article  CAS  PubMed  Google Scholar 

  11. Sonnichsen B, De Renzis S, Nielsen E, Rietdorf J, Zerial M . Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5 and Rab11. J Cell Biol 2000; 149: 901–914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rothberg KG, Heuser JE, Donzell WC, Ying Y-S, Glenney JR, Anderson RGW . Caveolin a protein component of caveolae membrane coats. Cell 1992; 68: 673–682.

    Article  CAS  PubMed  Google Scholar 

  13. Pelkmans L, Kartenbeck J, Helenius A . Caveolar endocytosis of simian virus 40 reveals a new two-step vesicular-transport pathway to the ER. Nat Cell Biol 2001; 5: 473–483.

    Article  Google Scholar 

  14. Azmi P, Seth A . RNF11 is a multifunctional modulator of growth factor receptor signalling and transcriptional regulation. Eur J Cancer 2005; 41: 2549–2560.

    Article  CAS  PubMed  Google Scholar 

  15. Li H, Seth A . An RNF11: Smurf2 complex mediates ubiquitination of the AMSH protein. Oncogene 2004; 23: 1801–1808.

    Article  CAS  PubMed  Google Scholar 

  16. Raiborg C, Stenmark H . The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 2009; 458: 445–452.

    Article  CAS  PubMed  Google Scholar 

  17. Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A et al. Functional proteomics mapping of a human signaling pathway. Genome Res 2004; 14: 1324–1332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Raiborg C, Bache KG, Mehlum A, Stang E, Stenmark H . Hrs recruits clathrin to early endosomes. EMBO J 2001; 20: 5008–5021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bache KG, Brech A, Mehlum A, Stenmark H . Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J Cell Biol 2003; 162: 435–442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen C, Zhou Z, Liu R, Li Y, Azmi PB, Seth AK . The WW domain containing E3 ubiquitin protein ligase 1 upregulates ErbB2 and EGFR through RING finger protein 11. Oncogene 2008; 27: 6845–6855.

    Article  CAS  PubMed  Google Scholar 

  21. Malerod L, Stuffers S, Brech A, Stenmark H . Vps22/EAP30 in ESCRT-II mediates endosomal sorting of growth factor and chemokine receptors destined for lysosomal degradation. Traffic 2007; 8: 1617–1629.

    Article  PubMed  Google Scholar 

  22. Raiborg C, Malerod L, Pedersen NM, Stenmark H . Differential functions of Hrs and ESCRT proteins in endocytic membrane trafficking. Exp Cell Res 2008; 314: 801–813.

    Article  CAS  PubMed  Google Scholar 

  23. Roxrud I, Raiborg C, Pedersen NM, Stang E, Stenmark H . An endosomally localized isoform of Eps15 interacts with Hrs to mediate degradation of epidermal growth factor receptor. J Cell Biol 2008; 180: 1205–1218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Collinet C, Stoter M, Bradshaw CR, Samusik N, Rink JC, Kenski D et al. Systems survey of endocytosis by multiparametric image analysis. Nature 2010; 464: 243–249.

    Article  CAS  PubMed  Google Scholar 

  25. Shembade N, Parvatiyar K, Harhaj NS, Harhaj EW . The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-kappaB signalling. EMBO J 2009; 28: 513–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Anderson LR, Betarbet R, Gearing M, Gulcher J, Hicks AA, Stefansson K et al. PARK10 candidate RNF11 is expressed by vulnerable neurons and localizes to lewy bodies in parkinson disease brain. J Neuropathol Exp Neurol 2007; 66: 955–964.

    Article  CAS  PubMed  Google Scholar 

  27. Kitching R, Wong MJ, Koehler D, Burger AM, Landberg G, Gish G et al. The RING-H2 protein RNF11 is differentially expressed in breast tumours and interacts with HECT-type E3 ligases. Biochim Biophys Acta 2003; 1639: 104–112.

    Article  CAS  PubMed  Google Scholar 

  28. Subramaniam V, Li H, Wong M, Kitching R, Attisano L, Wrana J et al. The RING-H2 protein RNF11 is overexpressed in breast cancer and is a target of smurf2 E3 ligase. Br J Cancer 2003; 89: 1538–1544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Santonico E, Belleudi F, Panni S, Torrisi MR, Cesareni G, Castagnoli L . Multiple modification and protein interaction signals drive the ring finger protein 11 (RNF11) E3 ligase to the endosomal compartment. Oncogene 2010; 29: 5604–5618.

    Article  CAS  PubMed  Google Scholar 

  30. Resh MD . Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1999; 1451: 1–16.

    Article  CAS  PubMed  Google Scholar 

  31. Bilodeau PS, Winistorfer SC, Kearney WR, Robertson AD, Piper RC . Vps27-Hse1 and ESCRT-I complexes cooperate to increase efficiency of sorting ubiquitinated proteins at the endosome. J Cell Biol 2003; 163: 237–243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Katzmann DJ, Stefan CJ, Babst M, Emr SD . Vps27 recruits ESCRT machinery to endosomes during MVB sorting. J Cell Biol 2003; 162: 413–423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yamashita Y, Kojima K, Tsukahara T, Agawa H, Yamada K, Amano Y et al. Ubiquitin-independent binding of Hrs mediates endosomal sorting of the interleukin-2 receptor beta-chain. J Cell Sci 2008; 121 (Pt 10): 1727–1738.

    Article  CAS  PubMed  Google Scholar 

  34. Amano Y, Yamashita Y, Kojima K, Yoshino K, Tanaka N, Sugamura K et al. Hrs recognizes a hydrophobic amino acid cluster in cytokine receptors during ubiquitin-independent endosomal sorting. J Biol Chem 2011; 286: 15458–15472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hislop JN, Marley A, Von Zastrow M . Role of mammalian vacuolar protein-sorting proteins in endocytic trafficking of a non-ubiquitinated G protein-coupled receptor to lysosomes. J Biol Chem 2004; 279: 22522–22531.

    Article  CAS  PubMed  Google Scholar 

  36. Gullapalli A, Wolfe BL, Griffin CT, Magnuson T, Trejo J . An essential role for SNX1 in lysosomal sorting of protease-activated receptor-1: evidence for retromer-, Hrs-, and Tsg101-independent functions of sorting nexins. Mol Biol Cell 2006; 17: 1228–1238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stuffers S, Sem Wegner C, Stenmark H, Brech A . Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 2009; 10: 925–937.

    Article  CAS  PubMed  Google Scholar 

  38. Petiot A, Faure J, Stenmark H, Gruenberg J . PI3P signaling regulates receptor sorting but not transport in the endosomal pathway. J Cell Biol 2003; 162: 971–979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bache KG, Raiborg C, Mehlum A, Stenmark H . STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J Biol Chem 2003; 278: 12513–12521.

    Article  CAS  PubMed  Google Scholar 

  40. Burack WR, Shaw AS . Signal transduction: hanging on a scaffold. Curr Opin Cell Biol 2000; 12: 211–216.

    Article  CAS  PubMed  Google Scholar 

  41. Locasale JW, Shaw AS, Chakraborty AK . Scaffold proteins confer diverse regulatory properties to protein kinase cascades. Proc Nat Acad Sci USA 2007; 104: 13307–13312.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wollert T, Hurley JH . Molecular mechanism of multivesicular body biogenesis by ESCRT complexes. Nature 2010; 464: 864–869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bache KG, Stuffers S, Malerod L, Slagsvold T, Raiborg C, Lechardeur D et al. The ESCRT-III subunit hVps24 is required for degradation but not silencing of the epidermal growth factor receptor. Mol Biol Cell 2006; 17: 2513–2523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Grandal MV, Madshus IH . Epidermal growth factor receptor and cancer: control of oncogenic signalling by endocytosis. J Cell Mol Med 2008; 12: 1527–1534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mimeault M, Batra SK . Complex oncogenic signaling networks regulate brain tumor-initiating cells and their progenies: pivotal roles of wild-type EGFR, EGFRvIII mutant and hedgehog cascades and novel multitargeted therapies. Brain Pathol 2011; 21: 479–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bagli E, Stefaniotou M, Morbidelli L, Ziche M, Psillas K, Murphy C et al. Luteolin inhibits vascular endothelial growth factor-induced angiogenesis; inhibition of endothelial cell survival and proliferation by targeting phosphatidylinositol 3'-kinase activity. Cancer Res 2004; 64: 7936–7946.

    Article  CAS  PubMed  Google Scholar 

  47. Bellou S, Hink MA, Bagli E, Panopoulou E, Bastiaens PI, Murphy C et al. VEGF autoregulates its proliferative and migratory ERK1/2 and p38 cascades by enhancing the expression of DUSP1 and DUSP5 phosphatases in endothelial cells. Am J Physiol Cell Physiol 2009; 297: C1477–C1489.

    Article  CAS  PubMed  Google Scholar 

  48. Stenmark H, Bucci C, Zerial M . Expression of Rab GTPases using recombinant vaccinia viruses. Methods Enzymol 1995; 257: 155–164.

    Article  CAS  PubMed  Google Scholar 

  49. Sflomos G, Kostaras E, Panopoulou E, Pappas N, Kyrkou A, Politou AS et al. ERBIN is a new SARA-interacting protein: competition between SARA and SMAD2 and SMAD3 for binding to ERBIN. J Cell Sci 2011; 124: 3209–3222.

    Article  CAS  PubMed  Google Scholar 

  50. Raiborg C, Bache KG, Mehlum A, Stenmark H . Function of Hrs in endocytic trafficking and signalling. Biochem Soc Trans 2001; 29 (Pt 4): 472–475.

    Article  CAS  PubMed  Google Scholar 

  51. Johannessen LE, Pedersen NM, Pedersen KW, Madshus IH, Stang E . Activation of the epidermal growth factor (EGF) receptor induces formation of EGF receptor- and Grb2-containing clathrin-coated pits. Mol Cell Biol 2006; 26: 389–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Sorkin AD, Teslenko LV, Nikolsky NN . The endocytosis of epidermal growth factor in A431 cells: a pH of microenvironment and the dynamics of receptor complex dissociation. Exp Cell Res 1988; 175: 192–205.

    Article  CAS  PubMed  Google Scholar 

  53. Skarpen E, Johannessen LE, Bjerk K, Fasteng H, Guren TK, Lindeman B et al. Endocytosed epidermal growth factor (EGF) receptors contribute to the EGF-mediated growth arrest in A431 cells by inducing a sustained increase in p21/CIP1. Exp Cell Res 1998; 243: 161–172.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the confocal laser microscope facility of the University of Ioannina for the use of the Leica TCS-SP scanning confocal microscope. This work was supported by the European Union integrated project ENDOTRACK (EU FP6, LSH-2004–1.1.5–2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Murphy.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kostaras, E., Sflomos, G., Pedersen, N. et al. SARA and RNF11 interact with each other and ESCRT-0 core proteins and regulate degradative EGFR trafficking. Oncogene 32, 5220–5232 (2013). https://doi.org/10.1038/onc.2012.554

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.554

Keywords

This article is cited by

Search

Quick links