Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Distinct roles for fibroblast growth factor signaling in cerebellar development and medulloblastoma

Abstract

Cerebellar granule neurons are the most abundant neurons in the brain, and a critical element of the circuitry that controls motor coordination and learning. In addition, granule neuron precursors (GNPs) are thought to represent cells of origin for medulloblastoma, the most common malignant brain tumor in children. Thus, understanding the signals that control the growth and differentiation of these cells has important implications for neurobiology and neurooncology. Our previous studies have shown that proliferation of GNPs is regulated by Sonic hedgehog (Shh), and that aberrant activation of the Shh pathway can lead to medulloblastoma. Moreover, we have demonstrated that Shh-dependent proliferation of GNPs and medulloblastoma cells can be blocked by basic fibroblast growth factor (bFGF). But while the mitogenic effects of Shh signaling have been confirmed in vivo, the inhibitory effects of bFGF have primarily been studied in culture. Here, we demonstrate that mice lacking FGF signaling in GNPs exhibit no discernable changes in GNP proliferation or differentiation. In contrast, activation of FGF signaling has a potent effect on tumor growth: treatment of medulloblastoma cells with bFGF prevents them from forming tumors following transplantation, and inoculation of tumor-bearing mice with bFGF markedly inhibits tumor growth in vivo. These results suggest that activators of FGF signaling may be useful for targeting medulloblastoma and other Shh-dependent tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Kofuji P, Hofer M, Millen KJ, Millonig JH, Davidson N, Lester HA et al. Functional analysis of the weaver mutant GIRK2 K+ channel and rescue of weaver granule cells. Neuron 1996; 16: 941–952.

    Article  CAS  PubMed  Google Scholar 

  2. Hamre KM, Goldowitz D . meander tail acts intrinsic to granule cell precursors to disrupt cerebellar development: analysis of meander tail chimeric mice. Development 1997; 124: 4201–4212.

    CAS  PubMed  Google Scholar 

  3. Mullen RJ, Hamre KM, Goldowitz D . Cerebellar mutant mice and chimeras revisited. Perspect Dev Neurobiol 1997; 5: 43–55.

    CAS  PubMed  Google Scholar 

  4. Pascual-Castroviejo I, Gutierrez M, Morales C, Gonzalez-Mediero I, Martinez-Bermejo A, Pascual-Pascual SI . Primary degeneration of the granular layer of the cerebellum. A study of 14 patients and review of the literature. Neuropediatrics 1994; 25: 183–190.

    Article  CAS  PubMed  Google Scholar 

  5. Schuller U, Heine VM, Mao J, Kho AT, Dillon AK, Han YG et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh-induced medulloblastoma. Cancer Cell 2008; 14: 123–134.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yang ZJ, Ellis T, Markant SL, Read TA, Kessler JD, Bourboulas M et al. Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells. Cancer Cell 2008; 14: 135–145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Goldowitz D, Hamre K . The cells and molecules that make a cerebellum. Trends Neurosci 1998; 21: 375–382.

    Article  CAS  PubMed  Google Scholar 

  8. Wang VY, Zoghbi HY . Genetic regulation of cerebellar development. Nat Rev Neurosci 2001; 2: 484–491.

    Article  CAS  PubMed  Google Scholar 

  9. Fujita S, Shimada M, Nakamura T . H3-thymidine autoradiographic studies on the cell proliferation and differentiation in the external and the internal granular layers of the mouse cerebellum. J Comp Neurol 1966; 128: 191–208.

    Article  CAS  PubMed  Google Scholar 

  10. Mares V, Lodin Z, Srajer J . The cellular kinetics of the developing mouse cerebellum. I. The generation cycle, growth fraction and rate of proliferation of the external granular layer. Brain Res 1970; 23: 323–342.

    Article  CAS  PubMed  Google Scholar 

  11. Fishell G, Hatten ME . Astrotactin provides a receptor system for CNS neuronal migration. Development 1991; 113: 755–765.

    CAS  PubMed  Google Scholar 

  12. Komuro H, Rakic P . Distinct modes of neuronal migration in different domains of developing cerebellar cortex. J Neurosci 1998; 18: 1478–1490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nicholson JL, Altman J . The effects of early hypo- and hyperthyroidism on the development of rat cerebellar cortex. I. Cell proliferation and differentiation. Brain Res 1972; 44: 13–23.

    Article  CAS  PubMed  Google Scholar 

  14. Wechsler-Reya RJ, Scott MP . Control of neuronal precursor proliferation in the cerebellum by Sonic Hedgehog. Neuron 1999; 22: 103–114.

    Article  CAS  PubMed  Google Scholar 

  15. Wallace VA . Purkinje-cell-derived Sonic hedgehog regulates granule neuron precursor cell proliferation in the developing mouse cerebellum. Curr Biol 1999; 9: 445–448.

    Article  CAS  PubMed  Google Scholar 

  16. Dahmane N . Ruiz i Altaba A. Sonic hedgehog regulates the growth and patterning of the cerebellum. Development 1999; 126: 3089–3100.

    PubMed  Google Scholar 

  17. Jia J, Jiang J . Decoding the Hedgehog signal in animal development. Cell Mol Life Sci 2006; 63: 1249–1265.

    Article  CAS  PubMed  Google Scholar 

  18. Varjosalo M, Taipale J . Hedgehog: functions and mechanisms. Genes Dev 2008; 22: 2454–2472.

    Article  CAS  PubMed  Google Scholar 

  19. Kenney AM, Widlund HR, Rowitch DH . Hedgehog and PI-3 kinase signaling converge on Nmyc1 to promote cell cycle progression in cerebellar neuronal precursors. Development 2004; 131: 217–228.

    Article  CAS  PubMed  Google Scholar 

  20. Oliver TG, Grasfeder LL, Carroll AL, Kaiser C, Gillingham CL, Lin SM et al. Transcriptional profiling of the Sonic hedgehog response: a critical role for N-myc in proliferation of neuronal precursors. Proc Natl Acad Sci USA. 2003; 100: 7331–7336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lewis PM, Gritli-Linde A, Smeyne R, Kottmann A, McMahon AP . Sonic hedgehog signaling is required for expansion of granule neuron precursors and patterning of the mouse cerebellum. Dev Biol 2004; 270: 393–410.

    Article  CAS  PubMed  Google Scholar 

  22. Corrales JD, Blaess S, Mahoney EM, Joyner AL . The level of sonic hedgehog signaling regulates the complexity of cerebellar foliation. Development 2006; 133: 1811–1821.

    Article  CAS  PubMed  Google Scholar 

  23. Spassky N, Han YG, Aguilar A, Strehl L, Besse L, Laclef C et al. Primary cilia are required for cerebellar development and Shh-dependent expansion of progenitor pool. Dev Biol 2008; 317: 246–259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Goodrich LV, Milenkovic L, Higgins KM, Scott MP . Altered neural cell fates and medulloblastoma in mouse patched mutants. Science 1997; 277: 1109–1113.

    Article  CAS  PubMed  Google Scholar 

  25. Hatton BA, Villavicencio EH, Tsuchiya KD, Pritchard JI, Ditzler S, Pullar B et al. The Smo/Smo model: hedgehog-induced medulloblastoma with 90% incidence and leptomeningeal spread. Cancer Res 2008; 68: 1768–1776.

    Article  CAS  PubMed  Google Scholar 

  26. Lee Y, Kawagoe R, Sasai K, Li Y, Russell HR, Curran T et al. Loss of suppressor-of-fused function promotes tumorigenesis. Oncogene 2007; 26: 6442–6447.

    Article  CAS  PubMed  Google Scholar 

  27. Thompson MC, Fuller C, Hogg TL, Dalton J, Finkelstein D, Lau CC et al. Genomics identifies medulloblastoma subgroups that are enriched for specific genetic alterations. J Clin Oncol 2006; 24: 1924–1931.

    Article  CAS  PubMed  Google Scholar 

  28. Northcott PA, Korshunov A, Witt H, Hielscher T, Eberhart CG, Mack S et al. Medulloblastoma Comprises Four Distinct Molecular Variants. J Clin Oncol 2010; 29: 1408–1414.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cho YJ, Tsherniak A, Tamayo P, Santagata S, Ligon A, Greulich H et al. Integrative Genomic Analysis of Medulloblastoma Identifies a Molecular Subgroup That Drives Poor Clinical Outcome. J Clin Oncol 2010; 29: 1424–1430.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Traiffort E, Charytoniuk D, Watroba L, Faure H, Sales N, Ruat M . Discrete localizations of hedgehog signalling components in the developing and adult rat nervous system. Eur J Neurosci 1999; 11: 3199–3214.

    Article  CAS  PubMed  Google Scholar 

  31. Fogarty MP, Emmenegger BA, Grasfeder LL, Oliver TG, Wechsler-Reya RJ . Fibroblast growth factor blocks Sonic hedgehog signaling in neuronal precursors and tumor cells. Proc Natl Acad Sci USA. 2007; 104: 2973–2978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hallahan AR, Pritchard JI, Hansen S, Benson M, Stoeck J, Hatton BA et al. The SmoA1 mouse model reveals that notch signaling is critical for the growth and survival of sonic hedgehog-induced medulloblastomas. Cancer Res 2004; 64: 7794–7800.

    Article  CAS  PubMed  Google Scholar 

  33. Cheng SY, Bishop JM . Suppressor of Fused represses Gli-mediated transcription by recruiting the SAP18-mSin3 corepressor complex. Proc Natl Acad Sci USA. 2002; 99: 5442–5447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hsu P, Yu F, Feron F, Pickles JO, Sneesby K, Mackay-Sim A . Basic fibroblast growth factor and fibroblast growth factor receptors in adult olfactory epithelium. Brain Res 2001; 896: 188–197.

    Article  CAS  PubMed  Google Scholar 

  35. Humke EW, Dorn KV, Milenkovic L, Scott MP, Rohatgi R . The output of Hedgehog signaling is controlled by the dynamic association between Suppressor of Fused and the Gli proteins. Genes Dev 2010; 24: 670–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lauth M, Bergstrom A, Toftgard R . Phorbol esters inhibit the Hedgehog signalling pathway downstream of Suppressor of Fused, but upstream of Gli. Oncogene 2007; 26: 5163–5168.

    Article  CAS  PubMed  Google Scholar 

  37. Eswarakumar VP, Lax I, Schlessinger J . Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 2005; 16: 139–149.

    Article  CAS  PubMed  Google Scholar 

  38. Lumpkin EA, Collisson T, Parab P, Omer-Abdalla A, Haeberle H, Chen P et al. Math1-driven GFP expression in the developing nervous system of transgenic mice. Gene Expr Patterns 2003; 3: 389–395.

    Article  CAS  PubMed  Google Scholar 

  39. Lee A, Kessler JD, Read TA, Kaiser C, Corbeil D, Huttner WB et al. Isolation of neural stem cells from the postnatal cerebellum. Nat Neurosci 2005; 8: 723–729.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yaguchi Y, Yu T, Ahmed MU, Berry M, Mason I, Basson MA . Fibroblast growth factor (FGF) gene expression in the developing cerebellum suggests multiple roles for FGF signaling during cerebellar morphogenesis and development. Dev Dyn 2009; 238: 2058–2072.

    Article  CAS  PubMed  Google Scholar 

  41. Yamaguchi TP, Harpal K, Henkemeyer M, Rossant J . fgfr-1 is required for embryonic growth and mesodermal patterning during mouse gastrulation. Genes Dev 1994; 8: 3032–3044.

    Article  CAS  PubMed  Google Scholar 

  42. Arman E, Haffner-Krausz R, Chen Y, Heath JK, Lonai P . Targeted disruption of fibroblast growth factor (FGF) receptor 2 suggests a role for FGF signaling in pregastrulation mammalian development. Proc Natl Acad Sci USA. 1998; 95: 5082–5087.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu X, Qiao W, Li C, Deng CX . Generation of Fgfr1 conditional knockout mice. Genesis 2002; 32: 85–86.

    Article  PubMed  Google Scholar 

  44. Yu K, Xu J, Liu Z, Sosic D, Shao J, Olson EN et al. Conditional inactivation of FGF receptor 2 reveals an essential role for FGF signaling in the regulation of osteoblast function and bone growth. Development 2003; 130: 3063–3074.

    Article  CAS  PubMed  Google Scholar 

  45. Yu C, Wang F, Jin C, Huang X, McKeehan WL . Independent repression of bile acid synthesis and activation of c-Jun N-terminal kinase (JNK) by activated hepatocyte fibroblast growth factor receptor 4 (FGFR4) and bile acids. J Biol Chem 2005; 280: 17707–17714.

    Article  CAS  PubMed  Google Scholar 

  46. Olson DC, Deng C, Hanahan D . Fibroblast growth factor receptor 4, implicated in progression of islet cell carcinogenesis by its expression profile, does not contribute functionally. Cell Growth Differ 1998; 9: 557–564.

    CAS  PubMed  Google Scholar 

  47. Rios I, Alvarez-Rodriguez R, Marti E, Pons S . Bmp2 antagonizes sonic hedgehog-mediated proliferation of cerebellar granule neurones through Smad5 signalling. Development 2004; 131: 3159–3168.

    Article  CAS  PubMed  Google Scholar 

  48. Zhao H, Ayrault O, Zindy F, Kim JH, Roussel MF . Post-transcriptional down-regulation of Atoh1/Math1 by bone morphogenic proteins suppresses medulloblastoma development. Genes Dev 2008; 22: 722–727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Read TA, Fogarty MP, Markant SL, McLendon RE, Wei Z, Ellison DW et al. Identification of CD15 as a Marker for Tumor-Propagating Cells in a Mouse Model of Medulloblastoma. Cancer Cell 2009; 15: 1–13.

    Article  Google Scholar 

  50. Oliver TG, Read TA, Kessler JD, Mehmeti A, Wells JF, Huynh TT et al. Loss of patched and disruption of granule cell development in a pre-neoplastic stage of medulloblastoma. Development 2005; 132: 2425–2439.

    Article  CAS  PubMed  Google Scholar 

  51. Lauth M, Bergström A, Shimokawa T, Tostar U, Jin Q, Fendrich V et al. DYRK1B-dependent autocrine-to-paracrine shift of Hedgehog signaling by mutant RAS. Nat Struct Mol Biol 2010; 17: 718–725.

    Article  CAS  PubMed  Google Scholar 

  52. Mason JM, Morrison DJ, Basson MA, Licht JD . Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol 2006; 16: 45–54.

    Article  CAS  PubMed  Google Scholar 

  53. Pons S, Trejo JL, Martinez-Morales JR, Marti E . Vitronectin regulates Sonic hedgehog activity during cerebellum development through CREB phosphorylation. Development 2001; 128: 1481–1492.

    CAS  PubMed  Google Scholar 

  54. Nicot A, Lelievre V, Tam J, Waschek JA, DiCicco-Bloom E . Pituitary adenylate cyclase-activating polypeptide and sonic hedgehog interact to control cerebellar granule precursor cell proliferation. J Neurosci 2002; 22: 9244–9254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al. Identification of human brain tumour initiating cells. Nature 2004; 432: 396–401.

    Article  CAS  PubMed  Google Scholar 

  56. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al. Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 2006; 444: 756–760.

    Article  CAS  PubMed  Google Scholar 

  57. Ward RJ, Lee L, Graham K, Satkunendran T, Yoshikawa K, Ling E et al. Multipotent CD15+ cancer stem cells in patched-1-deficient mouse medulloblastoma. Cancer Res 2009; 69: 4682–4690.

    Article  CAS  PubMed  Google Scholar 

  58. Rudin CM, Hann CL, Laterra J, Yauch RL, Callahan CA, Fu L et al. Treatment of medulloblastoma with hedgehog pathway inhibitor GDC-0449. N Engl J Med 2009; 361: 1173–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yauch RL, Dijkgraaf GJ, Alicke B, Januario T, Ahn CP, Holcomb T et al. Smoothened mutation confers resistance to a Hedgehog pathway inhibitor in medulloblastoma. Science 2009; 326: 572–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Song BW, Vinters HV, Wu D, Pardridge WM . Enhanced neuroprotective effects of basic fibroblast growth factor in regional brain ischemia after conjugation to a blood-brain barrier delivery vector. J Pharmacol Exp Ther 2002; 301: 605–610.

    Article  CAS  PubMed  Google Scholar 

  61. Debinski W, Tatter SB . Convection-enhanced delivery for the treatment of brain tumors. Expert Rev Neurother 2009; 9: 1519–1527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Williams EJ, Williams G, Howell FV, Skaper SD, Walsh FS, Doherty P . Identification of an N-cadherin motif that can interact with the fibroblast growth factor receptor and is required for axonal growth. J Biol Chem 2001; 276: 43879–43886.

    Article  CAS  PubMed  Google Scholar 

  63. Ballinger MD, Shyamala V, Forrest LD, Deuter-Reinhard M, Doyle LV, Wang JX et al. Semirational design of a potent, artificial agonist of fibroblast growth factor receptors. Nat Biotechnol 1999; 17: 1199–1204.

    Article  CAS  PubMed  Google Scholar 

  64. Li S, Christensen C, Kohler LB, Kiselyov VV, Berezin V, Bock E . Agonists of fibroblast growth factor receptor induce neurite outgrowth and survival of cerebellar granule neurons. Dev Neurobiol 2009; 69: 837–854.

    Article  CAS  PubMed  Google Scholar 

  65. Kenigsberg RL, Hong Y, Yao H, Lemieux N, Michaud J, Tautu C et al. Effects of basic fibroblast growth factor on the differentiation, growth, and viability of a new human medulloblastoma cell line (UM-MB1). Am J Pathol 1997; 151: 867–881.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Vachon P, Girard C, Theoret Y . Effects of basic fibroblastic growth factor on the growth of human medulloblastoma xenografts. J Neurooncol 2004 Mar-Apr 67: 139–146.

    Google Scholar 

  67. Weinstein M, Xu X, Ohyama K, Deng CXFGFR . 3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 1998; 125: 3615–3623.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Marcie Kritzik for help with the paper, Kerry Dorr for contributions to the early stages of this work, Albert Basson for helpful discussions, Chuxia Deng, David Ornitz and James Olson for providing mice, Matthias Lauth and Rune Toftgard for Sufu−/− MEFs, Sam Johnson for help with microscopy, Amanda Conway for help with western blotting, and Mike Cook and Beth Harvat for help with flow cytometry. This work was funded by grant number MH67916 from the National Institute of Mental Health, by funds from the Pediatric Brain Tumor Foundation of the US, and by a Leadership Award (LA1–01747) from the California Institute for Regenerative Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R J Wechsler-Reya.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emmenegger, B., Hwang, E., Moore, C. et al. Distinct roles for fibroblast growth factor signaling in cerebellar development and medulloblastoma. Oncogene 32, 4181–4188 (2013). https://doi.org/10.1038/onc.2012.440

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.440

Keywords

This article is cited by

Search

Quick links