Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Phosphorylation of the androgen receptor by PIM1 in hormone refractory prostate cancer

Abstract

Integration of cellular signaling pathways with androgen receptor (AR) signaling can be achieved through phosphorylation of AR by cellular kinases. However, the kinases responsible for phosphorylating the AR at numerous sites and the functional consequences of AR phosphorylation are only partially understood. Bioinformatic analysis revealed AR serine 213 (S213) as a putative substrate for PIM1, a kinase overexpressed in prostate cancer. Therefore, phosphorylation of AR serine 213 by PIM1 was examined using a phosphorylation site-specific antibody. Wild-type PIM1, but not catalytically inactive PIM1, specifically phosphorylated AR but not an AR serine-to-alanine mutant (S213A). In vitro kinase assays confirmed that PIM1 can phosphorylate AR S213 in a ligand-independent manner and cell type-specific phosphorylation was observed in prostate cancer cell lines. Upon PIM1 overexpression, AR phosphorylation was observed in the absence of hormone and was further increased in the presence of hormone in LNCaP, LNCaP-abl and VCaP cells. Moreover, phosphorylation of AR was reduced in the presence of PIM kinase inhibitors. An examination of AR-mediated transcription showed that reporter gene activity was reduced in the presence of PIM1 and wild-type AR, but not S213A mutant AR. Androgen-mediated transcription of endogenous PSA, Nkx3.1 and IGFBP5 was also decreased in the presence of PIM1, whereas IL6, cyclin A1 and caveolin 2 were increased. Immunohistochemical analysis of prostate cancer tissue microarrays showed significant P-AR S213 expression that was associated with hormone refractory prostate cancers, likely identifying cells with catalytically active PIM1. In addition, prostate cancers expressing a high level of P-AR S213 were twice as likely to be from biochemically recurrent cancers. Thus, AR phosphorylation by PIM1 at S213 impacts gene transcription and is highly prevalent in aggressive prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ward RD, Weigel NL . Steroid receptor phosphorylation: assigning function to site-specific phosphorylation 2009 Biofactors 35: 528–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lin HK, Wang L, Hu YC, Altuwaijri S, Chang C . Phosphorylation-dependent ubiquitylation and degradation of androgen receptor by Akt require Mdm2 E3 ligase. EMBO J 2002; 21: 4037–4048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lin HK, Yeh S, Kang HY, Chang C . Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci USA 2001; 98: 7200–7205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wen Y, Hu MC, Makino K, Spohn B, Bartholomeusz G, Yan DH et al. HER-2/neu promotes androgen-independent survival and growth of prostate cancer cells through the Akt pathway. Cancer Res 2000; 60: 6841–6845.

    CAS  PubMed  Google Scholar 

  5. Taneja SS, Ha S, Swenson NK, Huang HY, Lee P, Melamed J et al. Cell-specific regulation of androgen receptor phosphorylation in vivo. J Biol Chem 2005; 280: 40916–40924.

    Article  CAS  PubMed  Google Scholar 

  6. Saris CJ, Domen J, Berns A . The pim-1 oncogene encodes two related protein-serine/threonine kinases by alternative initiation at AUG and CUG. EMBO J 1991; 10: 655–664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Xie Y, Xu K, Dai B, Guo Z, Jiang T, Chen H et al. The 44 kDa Pim-1 kinase directly interacts with tyrosine kinase Etk/BMX and protects human prostate cancer cells from apoptosis induced by chemotherapeutic drugs. Oncogene 2006; 25: 70–78.

    Article  CAS  PubMed  Google Scholar 

  8. Xie Y, Xu K, Linn DE, Yang X, Guo Z, Shimelis H et al. The 44-kDa Pim-1 kinase phosphorylates BCRP/ABCG2 and thereby promotes its multimerization and drug-resistant activity in human prostate cancer cells. J Biol Chem 2008; 283: 3349–3356.

    Article  CAS  PubMed  Google Scholar 

  9. Mochizuki T, Kitanaka C, Noguchi K, Muramatsu T, Asai A, Kuchino Y . Physical and functional interactions between Pim-1 kinase and Cdc25A phosphatase. Implications for the Pim-1-mediated activation of the c-Myc signaling pathway. J Biol Chem 1999; 274: 18659–18666.

    Article  CAS  PubMed  Google Scholar 

  10. Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N . Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res 2008; 68: 5076–5085.

    Article  CAS  PubMed  Google Scholar 

  11. Aho TL, Sandholm J, Peltola KJ, Mankonen HP, Lilly M, Koskinen PJ . Pim-1 kinase promotes inactivation of the pro-apoptotic Bad protein by phosphorylating it on the Ser112 gatekeeper site. FEBS Lett 2004; 571: 43–49.

    Article  CAS  PubMed  Google Scholar 

  12. Cibull TL, Jones TD, Li L, Eble JN, Ann Baldridge L, Malott SR et al. Overexpression of Pim-1 during progression of prostatic adenocarcinoma. J Clin Pathol 2006; 59: 285–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Valdman A, Fang X, Pang ST, Ekman P, Egevad L . Pim-1 expression in prostatic intraepithelial neoplasia and human prostate cancer. Prostate 2004; 60: 367–371.

    Article  CAS  PubMed  Google Scholar 

  14. van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T et al. Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 1989; 56: 673–682.

    Article  CAS  PubMed  Google Scholar 

  15. Verbeek S, van Lohuizen M, van der Valk M, Domen J, Kraal G, Berns A . Mice bearing the E mu-myc and E mu-pim-1 transgenes develop pre-B-cell leukemia prenatally. Mol Cell Biol 1991; 11: 1176–1179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ellwood-Yen K, Graeber TG, Wongvipat J, Iruela-Arispe ML, Zhang J, Matusik R et al. Myc-driven murine prostate cancer shares molecular features with human prostate tumors. Cancer Cell 2003; 4: 223–238.

    Article  CAS  PubMed  Google Scholar 

  17. Wang J, Kim J, Roh M, Franco OE, Hayward SW, Wills ML et al. Pim1 kinase synergizes with c-MYC to induce advanced prostate carcinoma. Oncogene 2010; 29: 2477–2487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou Z, Flesken-Nikitin A, Corney DC, Wang W, Goodrich DW, Roy-Burman P et al. Synergy of p53 and Rb deficiency in a conditional mouse model for metastatic prostate cancer. Cancer Res 2006; 66: 7889–7898.

    Article  CAS  PubMed  Google Scholar 

  19. Koike N, Maita H, Taira T, Ariga H, Iguchi-Ariga SM . Identification of heterochromatin protein 1 (HP1) as a phosphorylation target by Pim-1 kinase and the effect of phosphorylation on the transcriptional repression function of HP1(1). FEBS Lett 2000; 467: 17–21.

    Article  CAS  PubMed  Google Scholar 

  20. Wang Z, Bhattacharya N, Mixter PF, Wei W, Sedivy J, Magnuson NS . Phosphorylation of the cell cycle inhibitor p21Cip1/WAF1 by Pim-1 kinase. Biochim Biophys Acta 2002; 1593: 45–55.

    Article  CAS  PubMed  Google Scholar 

  21. Chen WW, Chan DC, Donald C, Lilly MB, Kraft AS . Pim family kinases enhance tumor growth of prostate cancer cells. Mol Cancer Res 2005; 3: 443–451.

    Article  CAS  PubMed  Google Scholar 

  22. Cuypers HT, Selten G, Quint W, Zijlstra M, Maandag ER, Boelens W et al. Murine leukemia virus-induced T-cell lymphomagenesis: integration of proviruses in a distinct chromosomal region. Cell 1984; 37: 141–150.

    Article  CAS  PubMed  Google Scholar 

  23. Ha S, Ruoff R, Kahoud N, Franke TF, Logan SK . Androgen receptor levels are upregulated by Akt in prostate cancer. Endocr Relat Cancer 2011; 18: 245–255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xin L, Teitell MA, Lawson DA, Kwon A, Mellinghoff IK, Witte ON . Progression of prostate cancer by synergy of AKT with genotropic and nongenotropic actions of the androgen receptor. Proc Natl Acad Sci USA 2006; 103: 7789–7794.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim J, Roh M, Abdulkadir SA . Pim1 promotes human prostate cancer cell tumorigenicity and c-MYC transcriptional activity. BMC Cancer 2010; 10: 248.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Beharry Z, Mahajan S, Zemskova M, Lin Y-W, Tholanikunnel BG, Xia Z et al. The Pim protein kinases regulate energy metabolism and cell growth. Proc Natl Acad Sci USA 2011; 108: 528–533.

    Article  CAS  PubMed  Google Scholar 

  27. Xia Z, Knaak C, Ma J, Beharry ZM, McInnes C, Wang W et al. Synthesis and evaluation of novel inhibitors of Pim-1 and Pim-2 protein kinases. J Med Chem 2009; 52: 74–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rennie PS, Bruchoky N, Leco KJ, Sheppard PC, McQueen SA, Cheng H et al. Characterization of two cis-acting DNA elements involved in the androgen regulation of the probasin gene. Mol Endocrinol 1993; 7: 23–36.

    CAS  PubMed  Google Scholar 

  29. Ha S, Ruoff R, Kahoud N, Logan SK, Franke TF . Androgen receptor levels are upregulated by Akt in prostate cancer. Endocr Relat Cancer 2011; Feb: 11.

    Google Scholar 

  30. Thompson J, Peltola KJ, Koskinen PJ, Janne OA, Palvimo JJ . Attenuation of androgen receptor-dependent transcription by the serine/threonine kinase Pim-1. Lab Invest 2003; 83: 1301–1309.

    Article  CAS  PubMed  Google Scholar 

  31. Song H, Zhang B, Watson MA, Humphrey PA, Lim H, Milbrandt J . Loss of Nkx3.1 leads to the activation of discrete downstream target genes during prostate tumorigenesis. Oncogene 2009; 28: 3307–3319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bowen C, Bubendorf L, Voeller HJ, Slack R, Willi N, Sauter G et al. Loss of NKX3.1 expression in human prostate cancers correlates with tumor progression1,2. Cancer Res 2000; 60: 6111–6115.

    CAS  PubMed  Google Scholar 

  33. Shen MM, Abate-Shen C . Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 2010; 24: 1967–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dhanasekaran SM, Barrette TR, Ghosh D, Shah R, Varambally S, Kurachi K et al. Delineation of prognostic biomarkers in prostate cancer. Nature 2001; 412: 822–826.

    Article  CAS  PubMed  Google Scholar 

  35. Su Y, Wagner ER, Luo Q, Huang J, Chen L, He BC et al. Insulin-like growth factor binding protein 5 suppresses tumor growth and metastasis of human osteosarcoma. Oncogene 2011; 30: 3907–3917.

    Article  CAS  PubMed  Google Scholar 

  36. Wegiel B, Bjartell A, Ekberg J, Gadaleanu V, Brunhoff C, Persson JL . A role for cyclin A1 in mediating the autocrine expression of vascular endothelial growth factor in prostate cancer. Oncogene 2005; 24: 6385–6393.

    Article  CAS  PubMed  Google Scholar 

  37. Wegiel B, Bjartell A, Tuomela J, Dizeyi N, Tinzl M, Helczynski L et al. Multiple cellular mechanisms related to cyclin A1 in prostate cancer invasion and metastasis. J Natl Cancer Inst 2008; 100: 1022–1036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kim O, Jiang T, Xie Y, Guo Z, Chen H, Qiu Y . Synergism of cytoplasmic kinases in IL6-induced ligand-independent activation of androgen receptor in prostate cancer cells. Oncogene 2004; 23: 1838–1844.

    Article  CAS  PubMed  Google Scholar 

  39. Twillie DA, Eisenberger MA, Carducci MA, Hseih W-S, Kim WY, Simons JW . Interleukin-6: A candidate mediator of human prostate cancer morbidity. Urology 1995; 45: 542–549.

    Article  CAS  PubMed  Google Scholar 

  40. Michalaki V, Syrigos K, Charles P, Waxman J . Serum levels of IL-6 and TNF-[alpha] correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer 2004; 90: 2312–2316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Drachenberg DE, Elgamal AAA, Rowbotham R, Peterson M, Murphy GP . Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer. Prostate 1999; 41: 127–133.

    Article  CAS  PubMed  Google Scholar 

  42. Chun JY, Nadiminty N, Dutt S, Lou W, Yang JC, Kung H-J et al. Interleukin-6 regulates androgen synthesis in prostate cancer cells. Clin Cancer Res 2009; 15: 4815–4822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Gould ML, Williams G, Nicholson HD . Changes in caveolae, caveolin, and polymerase 1 and transcript release factor (PTRF) expression in prostate cancer progression. Prostate 2010; 70: 1609–1621.

    Article  CAS  PubMed  Google Scholar 

  44. Chen S, Gulla S, Cai C, Balk SP . Androgen receptor serine 81 phosphorylation mediates chromatin binding and transcriptional activation. J Biol Chem 2012; 287: 8571–8583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chen W, Dang T, Blind RD, Wang Z, Cavasotto CN, Hittelman AB et al. Glucocorticoid receptor phosphorylation differentially affects target gene expression. Mol Endocrinol 2008; 22: 1754–1766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zippo A, De Robertis A, Serafini R, Oliviero S . PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 2007; 9: 932–944.

    Article  CAS  PubMed  Google Scholar 

  47. Tomlins SA, Mehra R, Rhodes DR, Cao X, Wang L, Dhanasekaran SM et al. Integrative molecular concept modeling of prostate cancer progression. Nat Genet 2007; 39: 41–51.

    Article  CAS  PubMed  Google Scholar 

  48. Hendriksen PJ, Dits NF, Kokame K, Veldhoven A, van Weerden WM, Bangma CH et al. Evolution of the androgen receptor pathway during progression of prostate cancer. Cancer Res 2006; 66: 5012–5020.

    Article  CAS  PubMed  Google Scholar 

  49. Qin J, Liu X, Laffin B, Chen X, Choy G, Jeter CR et al. The PSA(-/lo) prostate cancer cell population harbors self-renewing long-term tumor-propagating cells that resist castration. Cell Stem Cell 2012; 10: 556–569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Payne H, Cornford P . Prostate-specific antigen: an evolving role in diagnosis, monitoring, and treatment evaluation in prostate cancer. Urol Oncol 2011; 29: 593–601.

    Article  PubMed  Google Scholar 

  51. Mumenthaler SM, Ng PY, Hodge A, Bearss D, Berk G, Kanekal S et al. Pharmacologic inhibition of Pim kinases alters prostate cancer cell growth and resensitizes chemoresistant cells to taxanes. Mol Cancer Ther 2009; 8: 2882–2893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Culig Z, Hoffmann J, Erdel M, Eder IE, Hobisch A, Hittmair A et al. Switch from antagonist to agonist of the androgen receptor bicalutamide is associated with prostate tumour progression in a new model system. Br J Cancer 1999; 81: 242–251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Gstaiger M, Luke B, Hess D, Oakeley EJ, Wirbelauer C, Blondel M et al. Control of nutrient-sensitive transcription programs by the unconventional prefoldin URI. Science 2003; 302: 1208–1212.

    Article  CAS  PubMed  Google Scholar 

  54. Garraway IP, Sun W, Tran CP, Perner S, Zhang B, Goldstein AS et al. Human prostate sphere-forming cells represent a subset of basal epithelial cells capable of glandular regeneration in vivo. Prostate 2010; 70: 491–501.

    PubMed  Google Scholar 

  55. Nwachukwu JC, Mita P, Ruoff R, Ha S, Wang Q, Huang SJ et al. Genome-wide impact of androgen receptor trapped clone-27 loss on androgen-regulated transcription in prostate cancer cells. Cancer Res 2009; 69: 3140–3147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the New York University School of Medicine Department of Urology at New York University School of Medicine. This work was supported by NIH R01CA112226 (SL), funds from the NYU Department of Urology, DOD grant PC094786 for the Prostate Cancer Biorepository Network (PCBN, JM), DOD grant PC080010 (PL) and NIH UO1 1U01CA149556-01(PL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S K Logan.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ha, S., Iqbal, N., Mita, P. et al. Phosphorylation of the androgen receptor by PIM1 in hormone refractory prostate cancer. Oncogene 32, 3992–4000 (2013). https://doi.org/10.1038/onc.2012.412

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.412

Keywords

This article is cited by

Search

Quick links