Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Germline mutation of Brca1 alters the fate of mammary luminal cells and causes luminal-to-basal mammary tumor transformation

Abstract

Breast cancer developed in familial BRCA1 mutation carriers bears striking similarities to sporadic basal-like breast tumors. The mechanism underlying the function of BRCA1 in suppressing basal-like breast cancer remains unclear. We previously reported that the deletion of p18Ink4c (p18), an inhibitor of G1 cyclin Ds-dependent CDK4 and CDK6, stimulates mammary luminal progenitor cell proliferation and leads to spontaneous luminal tumor development. We report here that germline mutation of Brca1 in p18-deficient mice blocks the increase of luminal progenitor cells, impairs luminal gene expression and promotes malignant transformation of mammary tumors. Instead of the luminal mammary tumors developed in p18 single-mutant mice, mammary tumors developed in the p18;Brca1 mice, similar to breast cancer developed in familial BRCA1 carriers, exhibited extensive basal-like features and lost the remaining wild-type allele of Brca1. These results reveal distinct functions of the RB and BRCA1 pathways in suppressing luminal and basal-like mammary tumors, respectively. These results also suggest a novel mechanism—causing luminal-to-basal transformation—for the development of basal-like breast cancer in familial BRCA1 carriers and establish a unique mouse model for developing therapeutic strategies to target both luminal and basal-like breast cancers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Althuis MD, Fergenbaum JH, Garcia-Closas M, Brinton LA, Madigan MP, Sherman ME . Etiology of hormone receptor-defined breast cancer: a systematic review of the literature. Cancer Epidemiol Biomarkers Prev 2004; 13: 1558–1568.

    CAS  PubMed  Google Scholar 

  2. Arnes JB, Brunet JS, Stefansson I, Begin LR, Wong N, Chappuis PO et al. Placental cadherin and the basal epithelial phenotype of BRCA1-related breast cancer. Clin Cancer Res 2005; 11: 4003–4011.

    Article  CAS  PubMed  Google Scholar 

  3. Foulkes WD, Brunet JS, Stefansson IM, Straume O, Chappuis PO, Begin LR et al. The prognostic implication of the basal-like (cyclin E high/p27 low/p53+/glomeruloid-microvascular-proliferation+) phenotype of BRCA1-related breast cancer. Cancer Res 2004; 64: 830–835.

    Article  CAS  PubMed  Google Scholar 

  4. Lakhani SR, Reis-Filho JS, Fulford L, Penault-Llorca F, van der Vijver M, Parry S et al. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res 2005; 11: 5175–5180.

    Article  CAS  PubMed  Google Scholar 

  5. Ribeiro-Silva A, Ramalho LN, Garcia SB, Brandao DF, Chahud F, Zucoloto S . p63 correlates with both BRCA1 and cytokeratin 5 in invasive breast carcinomas: further evidence for the pathogenesis of the basal phenotype of breast cancer. Histopathology 2005; 47: 458–466.

    Article  CAS  PubMed  Google Scholar 

  6. Foulkes WD . BRCA1 functions as a breast stem cell regulator. J Med Genet 2004; 41: 1–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu S, Ginestier C, Charafe-Jauffret E, Foco H, Kleer CG, Merajver SD et al. BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl Acad Sci USA 2008; 105: 1680–1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et al. Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 2009; 15: 907–913.

    Article  CAS  PubMed  Google Scholar 

  9. Proia TA, Keller PJ, Gupta PB, Klebba I, Jones AD, Sedic M et al. Genetic predisposition directs breast cancer phenotype by dictating progenitor cell fate. Cell Stem Cell 2011; 8: 149–163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Furuta S, Jiang X, Gu B, Cheng E, Chen PL, Lee WH . Depletion of BRCA1 impairs differentiation but enhances proliferation of mammary epithelial cells. Proc Natl Acad Sci USA 2005; 102: 9176–9181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brzovic PS, Keeffe JR, Nishikawa H, Miyamoto K, Fox D, Fukuda M et al. Binding and recognition in the assembly of an active BRCA1/BARD1 ubiquitin-ligase complex. Proc Natl Acad Sci USA 2003; 100: 5646–5651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hashizume R, Fukuda M, Maeda I, Nishikawa H, Oyake D, Yabuki Y et al. The RING heterodimer BRCA1-BARD1 is a ubiquitin ligase inactivated by a breast cancer-derived mutation. J Biol Chem 2001; 276: 14537–14540.

    Article  CAS  PubMed  Google Scholar 

  13. Cao L, Li W, Kim S, Brodie SG, Deng CX . Senescence, aging, and malignant transformation mediated by p53 in mice lacking the Brca1 full-length isoform. Genes Dev 2003; 17: 201–213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hakem R, de la Pompa JL, Sirard C, Mo R, Woo M, Hakem A et al. The tumor suppressor gene Brca1 is required for embryonic cellular proliferation in the mouse. Cell 1996; 85: 1009–1023.

    Article  CAS  PubMed  Google Scholar 

  15. Xu X, Wagner KU, Larson D, Weaver Z, Li C, Ried T et al. Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 1999; 22: 37–43.

    Article  CAS  PubMed  Google Scholar 

  16. Sherr CJ, Roberts JM . CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  17. Pei XH, Xiong Y . Biochemical and cellular mechanisms of mammalian CDK inhibitors: a few unresolved issues. Oncogene 2005; 24: 2787–2795.

    Article  CAS  PubMed  Google Scholar 

  18. Bai F, Pei XH, Godfrey VL, Xiong Y . Haploinsufficiency of p18(INK4c) sensitizes mice to carcinogen-induced tumorigenesis. Mol Cell Biol 2003; 23: 1269–1277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bai F, Pei XH, Pandolfi PP, Xiong Y . p18 Ink4c and Pten constrain a positive regulatory loop between cell growth and cell cycle control. Mol Cell Biol 2006; 26: 4564–4576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bai F, Pei XH, Nishikawa T, Smith MD, Xiong Y . p18Ink4c, but not p27Kip1, collaborates with Men1 to suppress neuroendocrine organ tumors. Mol Cell Biol 2007; 27: 1495–1504.

    Article  CAS  PubMed  Google Scholar 

  21. Pei XH, Bai F, Smith MD, Xiong Y . p18Ink4c collaborates with Men1 to constrain lung stem cell expansion and suppress non-small-cell lung cancers. Cancer Res 2007; 67: 3162–3170.

    Article  CAS  PubMed  Google Scholar 

  22. Pei XH, Bai F, Smith MD, Usary J, Fan C, Pai SY et al. CDK inhibitor p18(INK4c) is a downstream target of GATA3 and restrains mammary luminal progenitor cell proliferation and tumorigenesis. Cancer Cell 2009; 15: 389–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zindy F, Nilsson LM, Nguyen L, Meunier C, Smeyne RJ, Rehg JE et al. Hemangiosarcomas, medulloblastomas, and other tumors in Ink4c/p53-null mice. Cancer Res 2003; 63: 5420–5427.

    CAS  PubMed  Google Scholar 

  24. Wiedemeyer R, Brennan C, Heffernan TP, Xiao Y, Mahoney J, Protopopov A et al. Feedback circuit among INK4 tumor suppressors constrains human glioblastoma development. Cancer Cell 2008; 13: 355–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Leone PE, Walker BA, Jenner MW, Chiecchio L, Dagrada G, Protheroe RK et al. Deletions of CDKN2C in multiple myeloma: biological and clinical implications. Clin Cancer Res 2008; 14: 6033–6041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bignell GR, Greenman CD, Davies H, Butler AP, Edkins S, Andrews JM et al. Signatures of mutation and selection in the cancer genome. Nature 2010; 463: 893–898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lapointe J, Lachance Y, Labrie Y, Labrie C . Ap18 mutant defective in CDK6 binding in human breast cancer cells. Cancer Res 1996; 56: 4586–4589.

    CAS  PubMed  Google Scholar 

  28. Spirin K, Simpson J, Miller C, Koeffler H . Molecular analysis of INK4 genes in breast carcinomas. Int J Oncol 1997; 11: 737–744.

    CAS  PubMed  Google Scholar 

  29. Deng CX, Scott F . Role of the tumor suppressor gene Brca1 in genetic stability and mammary gland tumor formation. Oncogene 2000; 19: 1059–1064.

    Article  CAS  PubMed  Google Scholar 

  30. Cao L, Kim S, Xiao C, Wang RH, Coumoul X, Wang X et al. ATM-Chk2-p53 activation prevents tumorigenesis at an expense of organ homeostasis upon Brca1 deficiency. EMBO J 2006; 25: 2167–2177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Somasundaram K, Zhang H, Zeng YX, Houvras Y, Peng Y, Wu GS et al. Arrest of the cell cycle by the tumour-suppressor BRCA1 requires the CDK-inhibitor p21WAF1/CiP1. Nature 1997; 389: 187–190.

    Article  CAS  PubMed  Google Scholar 

  32. Lee YH, Bedford MT, Stallcup MR . Regulated recruitment of tumor suppressor BRCA1 to the p21 gene by coactivator methylation. Genes Dev 2011; 25: 176–188.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu X, Qiao W, Linke SP, Cao L, Li WM, Furth PA et al. Genetic interactions between tumor suppressors Brca1 and p53 in apoptosis, cell cycle and tumorigenesis. Nat Genet 2001; 28: 266–271.

    Article  CAS  PubMed  Google Scholar 

  34. Ramsey MR, Krishnamurthy J, Pei XH, Torrice C, Lin W, Carrasco DR et al. Expression of p16Ink4a compensates for p18Ink4c loss in cyclin-dependent kinase 4/6-dependent tumors and tissues. Cancer Res 2007; 67: 4732–4741.

    Article  CAS  PubMed  Google Scholar 

  35. Kitagawa M, Higashi H, Jung HK, Suzuki-Takahashi I, Ikeda M, Tamai K et al. The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2. EMBO J 1996; 15: 7060–7069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zarkowska TUS, Harlow E, Mittnacht S . Monoclonal antibodies specific for underphosphorylated retinoblastoma protein identify a cell cycle regulated phosphorylation site targeted by CDKs. Oncogene 1997; 14: 249–254.

    Article  CAS  PubMed  Google Scholar 

  37. Bennett LM, McAllister KA, Malphurs J, Ward T, Collins NK, Seely JC et al. Mice heterozygous for a Brca1 or Brca2 mutation display distinct mammary gland and ovarian phenotypes in response to diethylstilbestrol. Cancer Res 2000; 60: 3461–3469.

    CAS  PubMed  Google Scholar 

  38. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML et al. Generation of a functional mammary gland from a single stem cell. Nature 2006; 439: 84–88.

    Article  CAS  PubMed  Google Scholar 

  39. Van Keymeulen A, Rocha AS, Ousset M, Beck B, Bouvencourt G, Rock J et al. Distinct stem cells contribute to mammary gland development and maintenance. Nature 2011; 479: 189–193.

    Article  CAS  PubMed  Google Scholar 

  40. Sleeman KE, Kendrick H, Robertson D, Isacke CM, Ashworth A, Smalley MJ . Dissociation of estrogen receptor expression and in vivo stem cell activity in the mammary gland. J Cell Biol 2007; 176: 19–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bernardo GM, Lozada KL, Miedler JD, Harburg G, Hewitt SC, Mosley JD et al. FOXA1 is an essential determinant of ERalpha expression and mammary ductal morphogenesis. Development 2010; 137: 2045–2054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yamaji D, Na R, Feuermann Y, Pechhold S, Chen W, Robinson GW et al. Development of mammary luminal progenitor cells is controlled by the transcription factor STAT5A. Genes Dev 2009; 23: 2382–2387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Larue L, Ohsugi M, Hirchenhain J, Kemler R . E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proc Natl Acad Sci USA 1994; 91: 8263–8267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Stingl J, Raouf A, Emerman JT, Eaves CJ . Epithelial progenitors in the normal human mammary gland. J Mammary Gland Biol Neoplasia 2005; 10: 49–59.

    Article  PubMed  Google Scholar 

  45. Smart CE, Clarke C, Brooks KM, Raghavendra A, Brewster BL, French JD et al. Targeted disruption of Brca1 in restricted compartments of the mouse mammary epithelia. Breast Cancer Res Treat 2008; 112: 237–241.

    Article  PubMed  Google Scholar 

  46. Smart CE, Wronski A, French JD, Edwards SL, Asselin-Labat ML, Waddell N et al. Analysis of Brca1-deficient mouse mammary glands reveals reciprocal regulation of Brca1 and c-kit. Oncogene 2011; 30: 1597–1607.

    Article  CAS  PubMed  Google Scholar 

  47. Marquis ST, Rajan JV, Wynshaw-Boris A, Xu J, Yin GY, Abel KJ et al. The developmental pattern of Brca1 expression implies a role in differentiation of the breast and other tissues. Nat Genet 1995; 11: 17–26.

    Article  CAS  PubMed  Google Scholar 

  48. Lane TF, Deng C, Elson A, Lyu MS, Kozak CA, Leder P . Expression of Brca1 is associated with terminal differentiation of ectodermally and mesodermally derived tissues in mice. Genes Dev 1995; 9: 2712–2722.

    Article  CAS  PubMed  Google Scholar 

  49. Rajan JV, Wang M, Marquis ST, Chodosh LA . Brca2 is coordinately regulated with Brca1 during proliferation and differentiation in mammary epithelial cells. Proc Natl Acad Sci USA 1996; 93: 13078–13083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kubista M, Rosner M, Kubista E, Bernaschek G, Hengstschlager M . Brca1 regulates in vitro differentiation of mammary epithelial cells. Oncogene 2002; 21: 4747–4756.

    Article  CAS  PubMed  Google Scholar 

  51. Shakya R, Reid LJ, Reczek CR, Cole F, Egli D, Lin CS et al. BRCA1 tumor suppression depends on BRCT phosphoprotein binding, but not its E3 ligase activity. Science 2011; 334: 525–528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Buckley NE, Mullan PB . BRCA1 - Conductor of the Breast Stem Cell Orchestra: The Role of BRCA1 in Mammary Gland Development and Identification of Cell of Origin of BRCA1 Mutant Breast Cancer. Stem Cell Rev 2012, (e-pub ahead of print; doi:10.1007/s12015-012-9354-y).

    Article  CAS  PubMed  Google Scholar 

  53. Harte MT, O'Brien GJ, Ryan NM, Gorski JJ, Savage KI, Crawford NT et al. BRD7, a subunit of SWI/SNF complexes, binds directly to BRCA1 and regulates BRCA1-dependent transcription. Cancer Res 2010; 70: 2538–2547.

    Article  CAS  PubMed  Google Scholar 

  54. Gorski JJ, James CR, Quinn JE, Stewart GE, Staunton KC, Buckley NE et al. BRCA1 transcriptionally regulates genes associated with the basal-like phenotype in breast cancer. Breast Cancer Res Treat 2010; 122: 721–731.

    Article  CAS  PubMed  Google Scholar 

  55. Mullan PB, Quinn JE, Harkin DP . The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene 2006; 25: 5854–5863.

    Article  CAS  PubMed  Google Scholar 

  56. Rosen EM, Fan S, Ma Y . BRCA1 regulation of transcription. Cancer Lett 2006; 236: 175–185.

    Article  CAS  PubMed  Google Scholar 

  57. Williamson EA, Wolf I, O'Kelly J, Bose S, Tanosaki S, Koeffler HP . BRCA1 and FOXA1 proteins coregulate the expression of the cell cycle-dependent kinase inhibitor p27(Kip1). Oncogene 2006; 25: 1391–1399.

    Article  CAS  PubMed  Google Scholar 

  58. Hosey AM, Gorski JJ, Murray MM, Quinn JE, Chung WY, Stewart GE et al. Molecular basis for estrogen receptor alpha deficiency in BRCA1-linked breast cancer. J Natl Cancer Inst 2007; 99: 1683–1694.

    Article  CAS  PubMed  Google Scholar 

  59. Drost RM, Jonkers J . Preclinical mouse models for BRCA1-associated breast cancer. Br J Cancer 2009; 101: 1651–1657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Honrado E, Benitez J, Palacios J . The molecular pathology of hereditary breast cancer: genetic testing and therapeutic implications. Mod Pathol 2005; 18: 1305–1320.

    Article  CAS  PubMed  Google Scholar 

  61. Suspitsin EN, Sokolenko AP, Voskresenskiy DA, Ivantsov AO, Shelehova KV, Klimashevskiy VF et al. Mixed epithelial/mesenchymal metaplastic carcinoma (carcinosarcoma) of the breast in BRCA1 carrier. Breast Cancer 2011; 18: 137–140.

    Article  PubMed  Google Scholar 

  62. Polyak K, Weinberg RA . Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 2009; 9: 265–273.

    Article  CAS  PubMed  Google Scholar 

  63. Tkocz D, Crawford NT, Buckley NE, Berry FB, Kennedy RD, Gorski JJ et al. BRCA1 and GATA3 corepress FOXC1 to inhibit the pathogenesis of basal-like breast cancers. Oncogene 2012; 31: 3667–3678.

    Article  CAS  PubMed  Google Scholar 

  64. Molyneux G, Geyer FC, Magnay FA, McCarthy A, Kendrick H, Natrajan R et al. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells. Cell Stem Cell 2010; 7: 403–417.

    Article  CAS  PubMed  Google Scholar 

  65. Wright MH, Robles AI, Herschkowitz JI, Hollingshead MG, Anver MR, Perou CM et al. Molecular analysis reveals heterogeneity of mouse mammary tumors conditionally mutant for Brca1. Mol Cancer 2008; 7: 29.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al. Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 2007; 8: R76.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Herschkowitz JI, Zhao W, Zhang M, Usary J, Murrow G, Edwards D et al. Breast Cancer Special Feature: Comparative oncogenomics identifies breast tumors enriched in functional tumor-initiating cells. Proc Natl Acad Sci USA 2011; 109: 2778–2783.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Franklin DS, Godfrey VL, Lee H, Kovalev GI, Schoonhoven R, Chen-Kiang S et al. CDK inhibitors p18INK4c and p27KIP1 mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 1998; 12: 2899–2911.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gowen LC, Johnson BL, Latour AM, Sulik KK, Koller BH . Brca1 deficiency results in early embryonic lethality characterized by neuroepithelial abnormalities. Nat Genet 1996; 12: 191–194.

    Article  CAS  PubMed  Google Scholar 

  70. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006; 439: 993–997.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This project was initiated at the Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill. We thank Dr Yue Xiong for his invaluable support, discussion and critical reading of the manuscript, Dr Beverly Koller for providing Brca1 germline mutant mice and Drs Anthony Capobianco and Xiangxi Xu for discussions. This study was supported in part by a DOD Idea Award (W81XWH-10-1-0302) and startup funds from the University of Miami Miller School of Medicine to XHP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X-H Pei.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, F., Smith, M., Chan, H. et al. Germline mutation of Brca1 alters the fate of mammary luminal cells and causes luminal-to-basal mammary tumor transformation. Oncogene 32, 2715–2725 (2013). https://doi.org/10.1038/onc.2012.293

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.293

Keywords

This article is cited by

Search

Quick links