Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Downregulation of splicing factor SRSF3 induces p53β, an alternatively spliced isoform of p53 that promotes cellular senescence

Abstract

Most human pre-mRNA transcripts are alternatively spliced, but the significance and fine-tuning of alternative splicing in different biological processes is only starting to be understood. SRSF3 (SRp20) is a member of a highly conserved family of splicing factors that have critical roles in key biological processes, including tumor progression. Here, we show that SRSF3 regulates cellular senescence, a p53-mediated process to suppress tumorigenesis, through TP53 alternative splicing. Downregulation of SRSF3 was observed in normal human fibroblasts undergoing replicative senescence, and was associated with the upregulation of p53β, an alternatively spliced isoform of p53 that promotes p53-mediated senescence. Knockdown of SRSF3 by short interfering RNA (siRNA) in early-passage fibroblasts induced senescence, which was associated with elevated expression of p53β at mRNA and protein levels. Knockdown of p53 partially rescued SRSF3-knockdown-induced senescence, suggesting that SRSF3 acts on p53-mediated cellular senescence. RNA pulldown assays demonstrated that SRSF3 binds to an alternatively spliced exon uniquely included in p53β mRNA through the consensus SRSF3-binding sequences. RNA crosslinking and immunoprecipitation assays (CLIP) also showed that SRSF3 in vivo binds to endogenous p53 pre-mRNA at the region containing the p53β-unique exon. Splicing assays using a transfected TP53 minigene in combination with siRNA knockdown of SRSF3 showed that SRSF3 functions to inhibit the inclusion of the p53β-unique exon in splicing of p53 pre-mRNA. These data suggest that downregulation of SRSF3 represents an endogenous mechanism for cellular senescence that directly regulates the TP53 alternative splicing to generate p53β. This study uncovers the role for general splicing machinery in tumorigenesis, and suggests that SRSF3 is a direct regulator of p53.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Celotto AM, Graveley BR . Alternative splicing of the Drosophila Dscam pre-mRNA is both temporally and spatially regulated. Genetics 2001; 159: 599–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Zheng ZM . Regulation of alternative RNA splicing by exon definition and exon sequences in viral and mammalian gene expression. J Biomed Sci 2004; 11: 278–294.

    Article  CAS  PubMed  Google Scholar 

  3. Johnson JM, Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD et al. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science 2003; 302: 2141–2144.

    Article  CAS  PubMed  Google Scholar 

  4. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L, Mayr C et al. Alternative isoform regulation in human tissue transcriptomes. Nature 2008; 456: 470–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fujita K, Mondal AM, Horikawa I, Nguyen GH, Kumamoto K, Sohn JJ et al. p53 isoforms Delta133p53 and p53beta are endogenous regulators of replicative cellular senescence. Nat Cell Biol 2009; 11: 1135–1142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Akgul C, Moulding DA, Edwards SW . Alternative splicing of Bcl-2-related genes: functional consequences and potential therapeutic applications. Cell Mol Life Sci 2004; 61: 2189–2199.

    Article  CAS  PubMed  Google Scholar 

  7. Kannan K, Wang L, Wang J, Ittmann MM, Li W, Yen L . Recurrent chimeric RNAs enriched in human prostate cancer identified by deep sequencing. Proc Natl Acad Sci USA 2011; 108: 9172–9177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Thorsen K, Sorensen KD, Brems-Eskildsen AS, Modin C, Gaustadnes M, Hein AM et al. Alternative splicing in colon, bladder, and prostate cancer identified by exon array analysis. Mol Cell Proteomics 2008; 7: 1214–1224.

    Article  CAS  PubMed  Google Scholar 

  9. Venables JP . Aberrant and alternative splicing in cancer. Cancer Res 2004; 64: 7647–7654.

    Article  CAS  PubMed  Google Scholar 

  10. Venables JP, Klinck R, Koh C, Gervais-Bird J, Bramard A, Inkel L et al. Cancer-associated regulation of alternative splicing. Nat Struct Mol Biol 2009; 16: 670–676.

    Article  CAS  PubMed  Google Scholar 

  11. Watson PA, Chen YF, Balbas MD, Wongvipat J, Socci ND, Viale A et al. Constitutively active androgen receptor splice variants expressed in castration-resistant prostate cancer require full-length androgen receptor. Proc Natl Acad Sci USA 2010; 107: 16759–16765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Xi L, Feber A, Gupta V, Wu M, Bergemann AD, Landreneau RJ et al. Whole genome exon arrays identify differential expression of alternatively spliced, cancer-related genes in lung cancer. Nucleic Acids Res 2008; 36: 6535–6547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. David CJ, Chen M, Assanah M, Canoll P, Manley JL . HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 2009; 463: 364–368.

    Article  PubMed  PubMed Central  Google Scholar 

  14. David CJ, Manley JL . Alternative pre-mRNA splicing regulation in cancer: pathways and programs unhinged. Genes Dev 2010; 24: 2343–2364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gabut M, Samavarchi-Tehrani P, Wang X, Slobodeniuc V, O'Hanlon D, Sung HK et al. An alternative splicing switch regulates embryonic stem cell pluripotency and reprogramming. Cell 2011; 147: 132–146.

    Article  CAS  PubMed  Google Scholar 

  16. Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T . Regulation of alternative splicing by histone modifications. Science 2010; 327: 996–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Warzecha CC, Sato TK, Nabet B, Hogenesch JB, Carstens RP . ESRP1 and ESRP2 are epithelial cell-type-specific regulators of FGFR2 splicing. Mol Cell 2009; 33: 591–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salomonis N, Schlieve CR, Pereira L, Wahlquist C, Colas A, Zambon AC et al. Alternative splicing regulates mouse embryonic stem cell pluripotency and differentiation. Proc Natl Acad Sci USA 2010; 107: 10514–10519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R et al. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 2008; 452: 230–233.

    Article  CAS  PubMed  Google Scholar 

  20. Klinck R, Bramard A, Inkel L, Dufresne-Martin G, Gervais-Bird J, Madden R et al. Multiple alternative splicing markers for ovarian cancer. Cancer Res 2008; 68: 657–663.

    Article  CAS  PubMed  Google Scholar 

  21. Grosso AR, Martins S, Carmo-Fonseca M . The emerging role of splicing factors in cancer. EMBO Rep 2008; 9: 1087–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He X, Arslan AD, Pool MD, Ho TT, Darcy KM, Coon JS et al. Knockdown of splicing factor SRp20 causes apoptosis in ovarian cancer cells and its expression is associated with malignancy of epithelial ovarian cancer. Oncogene 2010; 30: 356–365.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rajan P, Gaughan L, Dalgliesh C, El-Sherif A, Robson CN, Leung HY et al. Regulation of gene expression by the RNA-binding protein Sam68 in cancer. Biochem Soc Trans 2008; 36 (Pt 3): 505–507.

    Article  CAS  PubMed  Google Scholar 

  24. Ezponda T, Pajares MJ, Agorreta J, Echeveste JI, Lopez-Picazo JM, Torre W et al. The oncoprotein SF2/ASF promotes non-small cell lung cancer survival by enhancing survivin expression. Clin Cancer Res 2010; 16: 4113–4125.

    Article  CAS  PubMed  Google Scholar 

  25. Karni R, de Stanchina E, Lowe SW, Sinha R, Mu D, Krainer AR . The gene encoding the splicing factor SF2/ASF is a proto-oncogene. Nat Struct Mol Biol 2007; 14: 185–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Karni R, Hippo Y, Lowe SW, Krainer AR . The splicing-factor oncoprotein SF2/ASF activates mTORC1. Proc Natl Acad Sci USA 2008; 105: 15323–15327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Olshavsky NA, Comstock CE, Schiewer MJ, Augello MA, Hyslop T, Sette C et al. Identification of ASF/SF2 as a critical, allele-specific effector of the cyclin D1b oncogene. Cancer Res 2010; 70: 3975–3984.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jia R, Li C, McCoy JP, Deng CX, Zheng ZM . SRp20 is a proto-oncogene critical for cell proliferation and tumor induction and maintenance. Int J Biol Sci 2010; 6: 806–826.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hayflick L . The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 1965; 37: 614–636.

    Article  CAS  PubMed  Google Scholar 

  30. Franza BR, Maruyama K, Garrels JI, Ruley HE . In vitro establishment is not a sufficient prerequisite for transformation by activated ras oncogenes. Cell 1986; 44: 409–418.

    Article  CAS  PubMed  Google Scholar 

  31. Land H, Parada LF, Weinberg RA . Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 1983; 304: 596–602.

    Article  CAS  PubMed  Google Scholar 

  32. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    Article  CAS  PubMed  Google Scholar 

  33. Di Micco R, Fumagalli M, Cicalese A, Piccinin S, Gasparini P, Luise C et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 2006; 444: 638–642.

    Article  CAS  PubMed  Google Scholar 

  34. Bartkova J, Rezaei N, Liontos M, Karakaidos P, Kletsas D, Issaeva N et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 2006; 444: 633–637.

    Article  CAS  PubMed  Google Scholar 

  35. Campisi J, d'Adda di Fagagna F . Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 2007; 8: 729–740.

    Article  CAS  PubMed  Google Scholar 

  36. Prieur A, Peeper DS . Cellular senescence in vivo: a barrier to tumorigenesis. Curr Opin Cell Biol 2008; 20: 150–155.

    Article  CAS  PubMed  Google Scholar 

  37. Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 2005; 436: 725–730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Herbig U, Jobling WA, Chen BP, Chen DJ, Sedivy JM . Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 2004; 14: 501–513.

    Article  CAS  PubMed  Google Scholar 

  39. Wynford-Thomas D . p53: guardian of cellular senescence. J Pathol 1996; 180: 118–121.

    Article  CAS  PubMed  Google Scholar 

  40. Bourdon JC, Fernandes K, Murray-Zmijewski F, Liu G, Diot A, Xirodimas DP et al. p53 isoforms can regulate p53 transcriptional activity. Genes Dev 2005; 19: 2122–2137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ebrahimi M, Boldrup L, Coates PJ, Wahlin YB, Bourdon JC, Nylander K . Expression of novel p53 isoforms in oral lichen planus. Oral Oncol 2008; 44: 156–161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Garcia-Alai MM, Tidow H, Natan E, Townsley FM, Veprintsev DB, Fersht AR . The novel p53 isoform “delta p53” is a misfolded protein and does not bind the p21 promoter site. Protein Sci 2008; 17: 1671–1678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Goldschneider D, Horvilleur E, Plassa LF, Guillaud-Bataille M, Million K, Wittmer-Dupret E et al. Expression of C-terminal deleted p53 isoforms in neuroblastoma. Nucleic Acids Res 2006; 34: 5603–5612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rohaly G, Chemnitz J, Dehde S, Nunez AM, Heukeshoven J, Deppert W et al. A novel human p53 isoform is an essential element of the ATR-intra-S phase checkpoint. Cell 2005; 122: 21–32.

    Article  CAS  PubMed  Google Scholar 

  45. Khoury MP, Bourdon JC . p53 Isoforms: an intracellular microprocessor? Genes Cancer 2011; 2: 453–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jumaa H, Guenet JL, Nielsen PJ . Regulated expression and RNA processing of transcripts from the Srp20 splicing factor gene during the cell cycle. Mol Cell Biol 1997; 17: 3116–3124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shaw SD, Chakrabarti S, Ghosh G, Krainer AR . Deletion of the N-terminus of SF2/ASF permits RS-domain-independent pre-mRNA splicing. PLoS One 2007; 2: e854.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Shen H, Green MR . RS domains contact splicing signals and promote splicing by a common mechanism in yeast through humans. Genes Dev 2006; 20: 1755–1765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zahler AM, Lane WS, Stolk JA, Roth MB . SR proteins: a conserved family of pre-mRNA splicing factors. Genes Dev 1992; 6: 837–847.

    Article  CAS  PubMed  Google Scholar 

  50. Zhu J, Krainer AR . Pre-mRNA splicing in the absence of an SR protein RS domain. Genes Dev 2000; 14: 3166–3178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Anko ML, Morales L, Henry I, Beyer A, Neugebauer KM . Global analysis reveals SRp20- and SRp75-specific mRNPs in cycling and neural cells. Nat Struct Mol Biol 2010; 17: 962–970.

    Article  PubMed  Google Scholar 

  52. Chen W, Itoyama T, Chaganti RS . Splicing factor SRP20 is a novel partner of BCL6 in a t(3;6)(q27;p21) translocation in transformed follicular lymphoma. Genes Chromosomes Cancer 2001; 32: 281–284.

    Article  CAS  PubMed  Google Scholar 

  53. Huang Y, Steitz JA . Splicing factors SRp20 and 9G8 promote the nucleocytoplasmic export of mRNA. Mol Cell 2001; 7: 899–905.

    Article  CAS  PubMed  Google Scholar 

  54. Jumaa H, Nielsen PJ . The splicing factor SRp20 modifies splicing of its own mRNA and ASF/SF2 antagonizes this regulation. Embo J 1997; 16: 5077–5085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sen S, Talukdar I, Webster NJ . SRp20 and CUG-BP1 modulate insulin receptor exon 11 alternative splicing. Mol Cell Biol 2009; 29: 871–880.

    Article  CAS  PubMed  Google Scholar 

  56. He X, Ee PL, Coon JS, Beck WT . Alternative splicing of the multidrug resistance protein 1/ATP binding cassette transporter subfamily gene in ovarian cancer creates functional splice variants and is associated with increased expression of the splicing factors PTB and SRp20. Clin Cancer Res 2004; 10: 4652–4660.

    Article  CAS  PubMed  Google Scholar 

  57. Fujita K, Horikawa I, Mondal AM, Jenkins LM, Appella E, Vojtesek B et al. Positive feedback between p53 and TRF2 during telomere-damage signalling and cellular senescence. Nat Cell Biol 2010; 12: 1205–1212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. Embo J 2003; 22: 4212–4222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW . Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 1998; 12: 3008–3019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Narita M, Nunez S, Heard E, Narita M, Lin AW, Hearn SA et al. Rb-mediated heterochromatin formation and silencing of E2F target genes during cellular senescence. Cell 2003; 113: 703–716.

    Article  CAS  PubMed  Google Scholar 

  61. Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM et al. A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 2002; 109: 335–346.

    Article  CAS  PubMed  Google Scholar 

  62. Webley K, Bond JA, Jones CJ, Blaydes JP, Craig A, Hupp T et al. Posttranslational modifications of p53 in replicative senescence overlapping but distinct from those induced by DNA damage. Mol Cell Biol 2000; 20: 2803–2808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Aubol BE, Adams JA . Applying the Brakes to Multisite SR Protein Phosphorylation: Substrate-Induced Effects on the Splicing Kinase SRPK1. Biochemistry 2011; 50: 6888–6900.

    Article  CAS  PubMed  Google Scholar 

  64. Jiang K, Patel NA, Watson JE, Apostolatos H, Kleiman E, Hanson O et al. Akt2 regulation of Cdc2-like kinases (Clk/Sty), serine/arginine-rich (SR) protein phosphorylation, and insulin-induced alternative splicing of PKCbetaII messenger ribonucleic acid. Endocrinology 2009; 150: 2087–2097.

    Article  CAS  PubMed  Google Scholar 

  65. Kanj SS, Dandashi N, El-Hed A, Harik H, Maalouf M, Kozhaya L et al. Ceramide regulates SR protein phosphorylation during adenoviral infection. Virology 2006; 345: 280–289.

    Article  CAS  PubMed  Google Scholar 

  66. Misteli T, Caceres JF, Clement JQ, Krainer AR, Wilkinson MF, Spector DL . Serine phosphorylation of SR proteins is required for their recruitment to sites of transcription in vivo. J Cell Biol 1998; 143: 297–307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sanford JR, Bruzik JP . Developmental regulation of SR protein phosphorylation and activity. Genes Dev 1999; 13: 1513–1518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Sciabica KS, Dai QJ, Sandri-Goldin RM . ICP27 interacts with SRPK1 to mediate HSV splicing inhibition by altering SR protein phosphorylation. Embo J 2003; 22: 1608–1619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tacke R, Chen Y, Manley JL . Sequence-specific RNA binding by an SR protein requires RS domain phosphorylation: creation of an SRp40-specific splicing enhancer. Proc Natl Acad Sci USA 1997; 94: 1148–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhong XY, Ding JH, Adams JA, Ghosh G, Fu XD . Regulation of SR protein phosphorylation and alternative splicing by modulating kinetic interactions of SRPK1 with molecular chaperones. Genes Dev 2009; 23: 482–495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kang JG, Pripuzova N, Majerciak V, Kruhlak M, Le SY, Zheng ZM . Kaposi's sarcoma-associated herpesvirus ORF57 promotes escape of viral and human interleukin-6 from microRNA-mediated suppression. J Virol 2011; 85: 2620–2630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Majerciak V, Yamanegi K, Nie SH, Zheng ZM . Structural and functional analyses of Kaposi sarcoma-associated herpesvirus ORF57 nuclear localization signals in living cells. J Biol Chem 2006; 281: 28365–28378.

    Article  CAS  PubMed  Google Scholar 

  73. Lanigan F, Geraghty JG, Bracken AP . Transcriptional regulation of cellular senescence. Oncogene 2011; 30: 2901–2911.

    Article  CAS  PubMed  Google Scholar 

  74. Lazzerini Denchi E, Attwooll C, Pasini D, Helin K . Deregulated E2F activity induces hyperplasia and senescence-like features in the mouse pituitary gland. Mol Cell Biol 2005; 25: 2660–2672.

    Article  PubMed  Google Scholar 

  75. Jia R, Liu X, Tao M, Kruhlak M, Guo M, Meyers C et al. Control of the papillomavirus early-to-late switch by differentially expressed SRp20. J Virol 2009; 83: 167–180.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Intramural Research Program of the NIH, NCI. We thank the NIH Fellows Editorial Board for improving the readability of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C C Harris.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tang, Y., Horikawa, I., Ajiro, M. et al. Downregulation of splicing factor SRSF3 induces p53β, an alternatively spliced isoform of p53 that promotes cellular senescence. Oncogene 32, 2792–2798 (2013). https://doi.org/10.1038/onc.2012.288

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.288

Keywords

This article is cited by

Search

Quick links