Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TGF-β stimulates Pyk2 expression as part of an epithelial-mesenchymal transition program required for metastatic outgrowth of breast cancer

Abstract

Epithelial-mesenchymal transition (EMT) programs are essential in promoting breast cancer invasion, systemic dissemination and in arousing proliferative programs in breast cancer micrometastases, a reaction that is partially dependent on focal adhesion kinase (FAK). Many functions of FAK are shared by its homolog, protein tyrosine kinase 2 (Pyk2), raising the question as to whether Pyk2 also participates in driving the metastatic outgrowth of disseminated breast cancer cells. In addressing this question, we observed Pyk2 expression to be (i) significantly upregulated in recurrent human breast cancers; (ii) differentially expressed across clonal isolates of human MDA-MB-231 breast cancer cells in a manner predictive for metastatic outgrowth, but not for invasiveness; and (iii) dramatically elevated in ex vivo cultures of breast cancer cells isolated from metastatic lesions as compared with cells that produced the primary tumor. We further show that metastatic human and murine breast cancer cells robustly upregulate their expression of Pyk2 during EMT programs stimulated by transforming growth factor-β (TGF-β). Genetic and pharmacological inhibition of Pyk2 demonstrated that the activity of this protein tyrosine kinase was dispensable for the ability of breast cancer cells to undergo invasion in response to TGF-β, and to form orthotopic mammary tumors in mice. In stark contrast, Pyk2-deficiency prevented TGF-β from stimulating the growth of breast cancer cells in 3D-organotypic cultures that recapitulated pulmonary microenvironments, as well as inhibited the metastatic outgrowth of disseminated breast cancer cells in the lungs of mice. Mechanistically, Pyk2 expression was inversely related to that of E-cadherin, such that elevated Pyk2 levels stabilized β1 integrin expression necessary to initiate the metastatic outgrowth of breast cancer cells. Thus, we have delineated novel functions for Pyk2 in mediating distinct elements of the EMT program and metastatic cascade regulated by TGF-β, particularly the initiation of secondary tumor outgrowth by disseminated cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Wendt MK, Allington TM, Schiemann WP . Mechanisms of the epithelial-mesenchymal transition by TGF-β. Future Oncol 2009; 5: 1145–1168.

    Article  CAS  PubMed  Google Scholar 

  2. Taylor MA, Parvani JG, Schiemann WP . The pathophysiology of epithelial-mesenchymal transition induced by transforming growth factor-beta in normal and malignant mammary epithelial cells. J Mammary Gland Biol Neoplasia 2010; 15: 169–190.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wendt MK, Smith JA, Schiemann WP . Transforming growth factor-beta-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression. Oncogene 2010; 29: 6485–6498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wendt MK, Taylor MA, Schiemann BJ, Schiemann WP . Down-regulation of epithelial cadherin is required to initiate metastatic outgrowth of breast cancer. Mol Biol Cell 2011; 22: 2423–2435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lipinski CA, Loftus JC . Targeting Pyk2 for therapeutic intervention. Expert Opin Ther Targets 2010; 14: 95–108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schaller MD . Cellular functions of FAK kinases: insight into molecular mechanisms and novel functions. J Cell Sci 2010; 123: 1007–1013.

    Article  CAS  PubMed  Google Scholar 

  7. Ilic D, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 1995; 377: 539–544.

    Article  CAS  PubMed  Google Scholar 

  8. Okigaki M, Davis C, Falasca M, Harroch S, Felsenfeld DP, Sheetz MP et al. Pyk2 regulates multiple signaling events crucial for macrophage morphology and migration. Proc Natl Acad Sci USA. 2003; 100: 10740–10745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Schaller MD, Sasaki T . Differential signaling by the focal adhesion kinase and cell adhesion kinase beta. J Biol Chem 1997; 272: 25319–25325.

    Article  CAS  PubMed  Google Scholar 

  10. Lev S, Moreno H, Martinez R, Canoll P, Peles E, Musacchio JM et al. Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature 1995; 376: 737–745.

    Article  CAS  PubMed  Google Scholar 

  11. Dikic I, Tokiwa G, Lev S, Courtneidge SA, Schlessinger J . A role for Pyk2 and Src in linking G-protein-coupled receptors with MAP kinase activation. Nature 1996; 383: 547–550.

    Article  CAS  PubMed  Google Scholar 

  12. Zrihan-Licht S, Fu Y, Settleman J, Schinkmann K, Shaw L, Keydar I et al. RAFTK/Pyk2 tyrosine kinase mediates the association of p190 RhoGAP with RasGAP and is involved in breast cancer cell invasion. Oncogene 2000; 19: 1318–1328.

    Article  CAS  PubMed  Google Scholar 

  13. Fan H, Guan JL . Compensatory function of Pyk2 protein in the promotion of focal adhesion kinase (FAK)-null mammary cancer stem cell tumorigenicity and metastatic activity. J Biol Chem 2011; 286: 18573–18582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sun CK, Ng KT, Lim ZX, Cheng Q, Lo CM, Poon RT et al. Proline-rich tyrosine kinase 2 (Pyk2) promotes cell motility of hepatocellular carcinoma through induction of epithelial to mesenchymal transition. PLoS One 2011; 6: e18878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Weis SM, Lim S-T, Lutu-Fuga KM, Barnes LA, Chen XL, Gothert JR et al. Compensatory role for Pyk2 during angiogenesis in adult mice lacking endothelial cell FAK. J Cell Biol 2008; 181: 43–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sieg DJ, Ilic D, Jones KC, Damsky CH, Hunter T, Schlaepfer DD . Pyk2 and Src-family protein-tyrosine kinases compensate for the loss of FAK in fibronectin-stimulated signaling events but Pyk2 does not fully function to enhance FAK- cell migration. Embo J. 1998; 17: 5933–5947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Nakamura K, Yano H, Schaefer E, Sabe H . Different modes and qualities of tyrosine phosphorylation of Fak and Pyk2 during epithelial-mesenchymal transdifferentiation and cell migration: analysis of specific phosphorylation events using site-directed antibodies. Oncogene 2001; 20: 2626–2635.

    Article  CAS  PubMed  Google Scholar 

  18. Wendt M, Schiemann W . Therapeutic targeting of the focal adhesion complex prevents oncogenic TGF-beta signaling and metastasis. Breast Cancer Res 2009; 11: R68.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Judson PL, He X, Cance WG . Van Le L. Overexpression of focal adhesion kinase, a protein tyrosine kinase, in ovarian carcinoma. Cancer 1999; 86: 1551–1556.

    Article  CAS  PubMed  Google Scholar 

  20. Kim SJ, Park JW, Yoon JS, Mok JO, Kim YJ, Park HK et al. Increased expression of focal adhesion kinase in thyroid cancer: immunohistochemical study. J Korean Med Sci 2004; 19: 710–715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lightfoot HM, Lark A, Livasy CA, Moore DT, Cowan D, Dressler L et al. Upregulation of focal adhesion kinase (FAK) expression in ductal carcinoma in situ (DCIS) is an early event in breast tumorigenesis. Breast Cancer Res Treat 2004; 88: 109–116.

    Article  CAS  PubMed  Google Scholar 

  22. Carelli S, Zadra G, Vaira V, Falleni M, Bottiglieri L, Nosotti M et al. Up-regulation of focal adhesion kinase in non-small cell lung cancer. Lung Cancer 2006; 53: 263–271.

    Article  PubMed  Google Scholar 

  23. Behmoaram E, Bijian K, Jie S, Xu Y, Darnel A, Bismar TA et al. Focal adhesion kinase-related proline-rich tyrosine kinase 2 and focal adhesion kinase are co-overexpressed in early-stage and invasive ErbB-2-positive breast cancer and cooperate for breast cancer cell tumorigenesis and invasiveness. Am J Pathol 2008; 173: 1540–1550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Burdick AD, Ivnitski-Steele ID, Lauer FT, Burchiel SW . PYK2 mediates anti-apoptotic AKT signaling in response to benzo[a]pyrene diol epoxide in mammary epithelial cells. Carcinogenesis 2006; 27: 2331–2340.

    Article  CAS  PubMed  Google Scholar 

  25. Avsian-Kretchmer O, Hsueh AJ . Comparative genomic analysis of the eight-membered ring cystine knot-containing bone morphogenetic protein antagonists. Mol Endocrinol 2004; 18: 1–12.

    Article  CAS  PubMed  Google Scholar 

  26. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD et al. Genes that mediate breast cancer metastasis to lung. Nature 2005; 436: 518–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shibue T, Weinberg RA . Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci USA. 2009; 106: 10290–10295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Roberts WG, Ung E, Whalen P, Cooper B, Hulford C, Autry C et al. Antitumor activity and pharmacology of a selective focal adhesion kinase inhibitor, PF-562,271. Cancer Res 2008; 68: 1935–1944.

    Article  CAS  PubMed  Google Scholar 

  29. Slack-Davis JK, Martin KH, Tilghman RW, Iwanicki M, Ung EJ, Autry C et al. Cellular Characterization of a Novel Focal Adhesion Kinase Inhibitor. J Biol Chem 2007; 282: 14845–14852.

    Article  CAS  PubMed  Google Scholar 

  30. Aslakson CJ, Miller FR . Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 1992; 52: 1399–1405.

    CAS  PubMed  Google Scholar 

  31. Galliher AJ, Schiemann WP . Beta3 integrin and Src facilitate transforming growth factor-beta mediated induction of epithelial-mesenchymal transition in mammary epithelial cells. Breast Cancer Res 2006; 8: R42.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Galliher AJ, Neil JR, Schiemann WP . Role of transforming growth factor-beta in cancer progression. Future Oncol 2006; 2: 743–763.

    Article  CAS  PubMed  Google Scholar 

  33. Galliher-Beckley AJ, Schiemann WP . Grb2 binding to Tyr284 in TβR-II is essential for mammary tumor growth and metastasis stimulated by TGF-β. Carcinogenesis 2008; 29: 244–251.

    Article  CAS  PubMed  Google Scholar 

  34. Sharma SV, Lee DY, Li B, Quinlan MP, Takahashi F, Maheswaran S et al. A chromatin-mediated reversible drug-tolerant state in cancer cell subpopulations. Cell 2010; 141: 69–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Taube JH, Herschkowitz JI, Komurov K, Zhou AY, Gupta S, Yang J et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc Natl Acad Sci USA. 2010; 107: 15449–15454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Creighton CJ, Li X, Landis M, Dixon JM, Neumeister VM, Sjolund A et al. Residual breast cancers after conventional therapy display mesenchymal as well as tumor-initiating features. Proc Natl Acad Sci USA. 2009; 106: 13820–13825.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Farmer P, Bonnefoi H, Anderle P, Cameron D, Wirapati P, Becette V et al. A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 2009; 15: 68–74.

    Article  CAS  PubMed  Google Scholar 

  38. Webb DJ, Donais K, Whitmore LA, Thomas SM, Turner CE, Parsons JT et al. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat Cell Biol. 2004; 6: 154–161.

    Article  CAS  PubMed  Google Scholar 

  39. llic Dk, Furuta Y, Kanazawa S, Takeda N, Sobue K, Nakatsuji N et al. Reduced cell motility and enhanced focal adhesion contact formation in cells from FAK-deficient mice. Nature 1995; 377: 539–544.

    Article  Google Scholar 

  40. Barkan D, Kleinman H, Simmons JL, Asmussen H, Kamaraju AK, Hoenorhoff MJ et al. Inhibition of metastatic outgrowth from single dormant tumor cells by targeting the cytoskeleton. Cancer Res 2008; 68: 6241–6250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Barkan D, El Touny LH, Michalowski AM, Smith JA, Chu I, Davis AS et al. Metastatic growth from dormant cells induced by a col-I-enriched fibrotic environment. Cancer Res 2010; 70: 5706–5716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Onder TT, Gupta PB, Mani SA, Yang J, Lander ES, Weinberg RA . Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Res 2008; 68: 3645–3654.

    Article  CAS  PubMed  Google Scholar 

  43. Dahl U, Sjodin A, Semb H . Cadherins regulate aggregation of pancreatic beta-cells in vivo. Development 1996; 122: 2895–2902.

    CAS  PubMed  Google Scholar 

  44. Wendt MK, Smith JA, Schiemann WP . p130Cas is required for mammary tumor growth and transforming growth factor-beta-mediated metastasis through regulation of Smad2/3 activity. J Biol Chem 2009; 284: 34145–34156.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Parvani JG, Taylor MA, Schiemann WP, Noncanonical TGF-β . Signaling During Mammary Tumorigenesis. J Mammary Gland Biol Neoplasia 2011; 16: 127–146.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Wendt MK, Molter J, Flask CA, Schiemann WP . In vivo Dual Substrate Bioluminesent Imaging. J Vis Exp 2011, pii:3245 (doi:10.3791/3245).

  47. Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celia-Terrassa T et al. Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med 2011; 17: 1101–1108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Galliher AJ, Schiemann WP . Src phosphorylates Tyr284 in TGF-beta type II receptor and regulates TGF-beta stimulation of p38 MAPK during breast cancer cell proliferation and invasion. Cancer Res 2007; 67: 3752–3758.

    Article  CAS  PubMed  Google Scholar 

  49. Ungefroren H, Sebens S, Groth S, Gieseler F . Fandrich F. The Src family kinase inhibitors PP2 and PP1 block TGF-β1-mediated cellular responses by direct and differential inhibition of type I and type II TGF-β receptors. Curr Cancer Drug Targets 2011; 11: 524–535.

    Article  CAS  PubMed  Google Scholar 

  50. Kang Y, He W, Tulley S, Gupta GP, Serganova I, Chen CR et al. Breast cancer bone metastasis mediated by the Smad tumor suppressor pathway. Proc Natl Acad Sci USA. 2005; 102: 13909–13914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zhang XH, Wang Q, Gerald W, Hudis CA, Norton L, Smid M et al. Latent bone metastasis in breast cancer tied to Src-dependent survival signals. Cancer Cell 2009; 16: 67–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Korpal M, Yan J, Lu X, Xu S, Lerit DA, Kang Y . Imaging transforming growth factor-beta signaling dynamics and therapeutic response in breast cancer bone metastasis. Nat Med 2009.

  53. Lim S-T, Chen XL, Lim Y, Hanson DA, Vo T-T, Howerton K et al. Nuclear FAK Promotes Cell Proliferation and Survival through FERM-Enhanced p53 Degradation. Mol Cell 2008; 29: 9–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lim ST, Miller NL, Nam JO, Chen XL, Lim Y, Schlaepfer DD . Pyk2 inhibition of p53 as an adaptive and intrinsic mechanism facilitating cell proliferation and survival. J Biol Chem 2010; 285: 1743–1753.

    Article  CAS  PubMed  Google Scholar 

  55. Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M et al. Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 2005; 115: 44–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D et al. Oncogenic pathway signatures in human cancers as a guide to targeted therapies. Nature 2006; 439: 353–357.

    Article  CAS  PubMed  Google Scholar 

  57. Huang E, Cheng SH, Dressman H, Pittman J, Tsou MH, Horng CF et al. Gene expression predictors of breast cancer outcomes. Lancet 2003; 361: 1590–1596.

    Article  CAS  PubMed  Google Scholar 

  58. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007; 449: 557–563.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Pfizer for generously providing the small molecule inhibitors against FAK and Pyk2. Members of the Schiemann Laboratory are thanked for critical reading of the manuscript. WPS was supported in part by grants from the National Institutes of Health (CA129359), the Susan G Komen for the Cure Foundation (BCTR0706967), the Department of Defense (BC084561), and pilot funding from the Case Comprehensive Cancer Center (P30 CA043703), while MKW was supported by a fellowship from the American Cancer Society (PF-09-120-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W P Schiemann.

Ethics declarations

Competing interests

The authors declare not conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wendt, M., Schiemann, B., Parvani, J. et al. TGF-β stimulates Pyk2 expression as part of an epithelial-mesenchymal transition program required for metastatic outgrowth of breast cancer. Oncogene 32, 2005–2015 (2013). https://doi.org/10.1038/onc.2012.230

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.230

Keywords

This article is cited by

Search

Quick links