Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TGF-β and NF-κB signal pathway cross-talk is mediated through TAK1 and SMAD7 in a subset of head and neck cancers

Abstract

Transforming growth factor-beta (TGF-β) has a dual role in epithelial malignancies, including head and neck squamous cell carcinoma (HNSCC). Attenuation of canonical TGF-β signaling enhances de novo tumor development, whereas TGF-β overexpression and signaling paradoxically promotes malignant progression. We recently observed that TGF-β-induced growth arrest response is attenuated, in association with aberrant activation of nuclear factor-κB (NF-κB), a transcription factor, which promotes malignant progression in HNSCC. However, what role cross-talk between components of the TGF-β and NF-κB pathways plays in altered activation of these pathways has not been established. Here, we show TGF-β receptor II and TGF-β-activated kinase 1 (TAK1) are predominantly expressed in a subset of HNSCC tumors with nuclear activation of NF-κB family member RELA (p65). Further, TGF-β1 treatment induced sequential phosphorylation of TAK1, IKK, IκBα and RELA in human HNSCC lines. TAK1 enhances TGF-β-induced NF-κB activation, as TAK1 siRNA knockdown decreased TGF-β1-induced phosphorylation of IKK, IκB and RELA, degradation of IκBα, RELA nuclear translocation and DNA binding, and NF-κB-induced reporter and target gene transcription. Functionally, TAK1 siRNA inhibited cell proliferation, migration and invasion. Celastrol, a TAK1 inhibitor and anti-inflammatory compound used in traditional Chinese medicine, also decreased TGF-β1-induced phosphorylation of TAK1 and RELA, and suppressed basal, TGF-β1- and tumor necrosis factor-alpha (TNF-α)-induced NF-κB reporter gene activity. Celastrol also inhibited cell proliferation, while increasing sub-G0 DNA fragmentation and Annexin V markers of apoptosis. Furthermore, TGF-β and RELA activation promoted SMAD7 expression. In turn, SMAD7 preferentially suppressed TGF-β-induced SMAD and NF-κB reporters when compared with constitutive or TNF-α-induced NF-κB reporter gene activation. Thus, cross-talk by TGF-β via TAK1 and NF-κB promotes the malignant phenotype of HNSCC. Moreover, NF-κB may contribute to the downstream attenuation of canonical TGF-β signaling through increased SMAD7 expression. Celastrol highlights the therapeutic potential of agents targeting TAK1 as a key node in this pro-oncogenic TGF-β-NF-κB signal pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Siegel P, Massagué J . Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer 2003; 3: 807–821.

    Article  CAS  PubMed  Google Scholar 

  2. Cui W, Fowlis D, Bryson S, Duffie E, Ireland H, Balmain A et al. TGFbeta1 inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell 1996; 86: 531–542.

    Article  CAS  PubMed  Google Scholar 

  3. Attisano L, Lee-Hoeflich S . The Smads. Genome Biol 2001; 2: REVIEWS3010 (e-pub ahead of print 2 August 2001).

    Article  Google Scholar 

  4. Massagué J . TGFbeta in Cancer. Cell 2008; 134: 215–230.

    Article  PubMed  PubMed Central  Google Scholar 

  5. White RA, Malkoski SP, Wang XJ . TGFβ signaling in head and neck squamous cell carcinoma. Oncogene 2010; 29: 5437–5446.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bian Y, Terse A, Du J, Hall B, Molinolo A, Zhang P et al. Progressive tumor formation in mice with conditional deletion of TGF-beta signaling in head and neck epithelia is associated with activation of the PI3K/Akt pathway. Cancer Res 2009; 69: 5918–5926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bornstein S, White R, Malkoski S, Oka M, Han G, Cleaver T et al. Smad4 loss in mice causes spontaneous head and neck cancer with increased genomic instability and inflammation. J Clin Invest 2009; 119: 3408–3419.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu SL, Herrington H, Reh D, Weber S, Bornstein S, Wang D et al. Loss of transforming growth factor-beta type II receptor promotes metastatic head-and-neck squamous cell carcinoma. Genes Dev 2006; 20: 1331–1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cohen J, Chen Z, Lu S, Yang X, Arun P, Ehsanian R et al. Attenuated transforming growth factor beta signaling promotes nuclear factor-kappaB activation in head and neck cancer. Cancer Res 2009; 69: 3415–3424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Van Waes C . Nuclear factor-κB in development, prevention, and therapy of cancer. Clin Cancer Res 2007; 13: 1076–1082.

    Article  CAS  PubMed  Google Scholar 

  11. Wolf JS, Chen Z, Dong G, Sunwoo JB, Bancroft CC, Capo DE et al. Interleukin-1a promotes nuclear factor kappaB and AP-1-induced IL-8 expression, cell survival and proliferation in head and neck squamous cell carcinoma. Clin Cancer Res 2001; 7: 1812–1820.

    CAS  PubMed  Google Scholar 

  12. Jackson-Bernitsas DG, Ichikawa H, Takada Y, Myers JN, Lin XL, Darnay BG et al. Evidence that TNF-TNFR1-TRADD-TRAF2-RIP-TAK1-IKK pathway mediates constitutive NF-kB activation and proliferation in human head and neck squamous cell carcinoma. Oncogene 2007; 26: 1385–1397.

    Article  CAS  PubMed  Google Scholar 

  13. Sakurai H, Miyoshi H, Toriumi W, Sugita T . Functional interactions of transforming growth factor beta-activated kinase 1 with IkappaB kinases to stimulate NF-kappaB activation. J Biol Chem 1999; 274: 10641–10648.

    Article  CAS  PubMed  Google Scholar 

  14. Takaesu G, Kishida S, Hiyama A, Yamaguchi K, Shibuya H, Irie K et al. TAB2, a novel adaptor protein, mediates activation of TAK1 MAPKKK by linking TAK1 to TRAF6 in the IL-1 signal transduction pathway. Mol Cell 2000; 5: 649–658.

    Article  CAS  PubMed  Google Scholar 

  15. Hong S, Lim S, Li A, Lee C, Lee Y, Lee E et al. Smad7 binds to the adaptors TAB2 and TAB3 to block recruitment of the kinase TAK1 to the adaptor TRAF2. Nat Immunol 2007; 8: 504–513.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang Y . Non-Smad pathways in TGF-beta signaling. Cell Res 2009; 19: 128–139.

    Article  CAS  PubMed  Google Scholar 

  17. Solt LA, May MJ . The IkappaB kinase complex: master regulator of NF-kappaB signaling. Immunol Res 2008; 42: 3–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baldwin AJ . The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 1996; 14: 649–683.

    Article  CAS  PubMed  Google Scholar 

  19. Perkins ND . The diverse and complex roles of NF-kB subunits in cancer. Nat Rev Cancer 2012; 12: 121–132.

    Article  CAS  PubMed  Google Scholar 

  20. Bitzer M, von Gersdorff G, Liang D, Dominguez-Rosales A, Beg A, Rojkind M et al. A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA. Genes Dev 2000; 14: 187–197.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Derynck R, Smad-dependent Zhang Y . and Smad-independent pathways in TGF-beta family signalling. Nature 2003; 425: 577–584.

    Article  CAS  PubMed  Google Scholar 

  22. Hong S, Lee C, Kim S . Smad7 sensitizes tumor necrosis factor induced apoptosis through the inhibition of antiapoptotic gene expression by suppressing activation of the nuclear factor-kappaB pathway. Cancer Res 2007; 67: 9577–9583.

    Article  CAS  PubMed  Google Scholar 

  23. Sethi G, Ahn K, Pandey M, Aggarwal B . Celastrol a novel triterpene, potentiates TNF-induced apoptosis and suppresses invasion of tumor cells by inhibiting NF-kappaB-regulated gene products and TAK1-mediated NF-kappaB activation. Blood 2007; 109: 2727–2735.

    CAS  PubMed  Google Scholar 

  24. Brenner JC, Graham MP, Kumar B, Saunders LM, Kupfer R, Lyons RH et al. Genotyping of 73 UM-SCC head and neck squamous cell carcinoma cell lines. Head Neck 2010; 32: 1195–1201.

    Article  Google Scholar 

  25. Reiss M, Stash E . High frequency of resistance of human squamous carcinoma cells to the anti-proliferative action of transforming growth factor beta. Cancer Commun 1990; 2: 363–369.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang PL, Pellitteri PK, Law A, Gilroy PA, Wood GC, Kennedy TL et al. Overexpression of phosphorylated nuclear factor-kappa B in tonsillar squamous cell carcinoma and high-grade dysplasia is associated with poor prognosis. Mod Pathol 2005; 18: 924–932.

    Article  CAS  PubMed  Google Scholar 

  27. Yamaguchi K, Shirakabe K, Shibuya H, Irie K, Oishi I, Ueno N et al. Identification of a member of the MAPKKK family as a potential mediator of TGF-beta signal transduction. Science 1995; 270: 2008–2011.

    Article  CAS  PubMed  Google Scholar 

  28. Yamashita M, Fatyol K, Jin C, Wang X, Liu Z, Zhang YE . TRAF6 mediates Smad-independent activation of JNK and p38 by TGF-beta. Mol Cell 2008; 31: 918–924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sorrentino A, Thakur N, Grimsby S, Marcusson A, von Bulow V, Schuster N et al. The type I TGF-beta receptor engages E3ligase TRAF6 to turn on the kinase TAK1 to kill prostate cancer cells. Nat Cell Biol 2008; 10: 1199–1207.

    Article  CAS  PubMed  Google Scholar 

  30. Mu Y, Gudey SK, Landstrom M . Non-Smad signaling pathways. Cell Tissue Res 2012; 347: 11–20.

    Article  CAS  PubMed  Google Scholar 

  31. Lam LT, Davis RE, Pierce J, Hepperle M, Xu Y, Hottelet M et al. Small molecule inhibitors of IκB kinase are selectively toxic for subgroups of diffuse large B-cell lymphoma defined by gene expression profiling. Clin Cancer Res 2005; 11: 28–40.

    Article  CAS  PubMed  Google Scholar 

  32. Setty A, Sigal L . Herbal medications commonly used in the practice of rheumatology: mechanisms of action, efficacy, and side effects. Semin Arthritis Rheum 2005; 34: 773–784.

    Article  PubMed  Google Scholar 

  33. Hayashi H, Abdollah S, Qiu Y, Cai J, Xu YY, Grinnell BW et al. The MAD-related protein Smad7 associates with the TGFbeta receptor and functions as an antagonist of TGFbeta signaling. Cell 1997; 89: 1165–1173.

    Article  CAS  PubMed  Google Scholar 

  34. Arsura M, Panta GR, Bilyeu JD, Cavin LG, Sovak MA et al. Transient activation of TAK1/IKK kianse pathway by TGF-beta1 inhibits AP-1/SMAD signaling and apoptosis: implications in liver tumor formation. Hepatology 2003; 38: 1540–1551.

    PubMed  Google Scholar 

  35. Dowdy SC, Mariani A, Janknect R . HER2/Neu- and TAK1-mediated up-regulation of the transforming growth factor beta inhibitor Smad7 via the ETS protein ER81. J Biol Chem 2003; 278: 44377–44384.

    Article  CAS  PubMed  Google Scholar 

  36. Edlund S, Bu S, Schuster N, Aspenstrom P, Heuchel R, Heldin NE et al. Transforming growth factor-beta1 (TGF-beta)-induced apoptosis of prostate cancer cells involves Smad-7 dependent activation of p38 by TGF-beta-activated kinase-1 and mitogen-activated protein kinase kinase 3. Mol Biol Cell 2003; 14: 529–524.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Yasui T, Kadono Y, Nakamura M, Oshima Y, Matsumoto T, Masuda H et al. Regulation of RANKL-induced osteoclatogenesis by TGF-β through molecular interaction between Smad3 and Traf6. J Bone Miner Res 2011; 26: 1447–1456.

    Article  CAS  PubMed  Google Scholar 

  38. Hahn S, Schutte M, Hoque A, Moskaluk C, da Costa L, Rozenblum E et al. DPC4, a candidate tumor suppressor gene at human chromosome 18q21.1. Science 1996; 271: 350–353.

    Article  CAS  PubMed  Google Scholar 

  39. Xie W, Bharathy S, Kim D, Haffty B, Rimm D, Reiss M . Frequent alterations of Smad signaling in human head and neck squamous cell carcinomas: a tissue microarray analysis. Oncol Res 2003; 14: 61–73.

    Article  CAS  PubMed  Google Scholar 

  40. Jadrich JL, O'Conner MB, Coucouvanis E . Expression of TAK1, a mediator of TGF-β and BMP signaling, during mouse embryonic development. Gene Expr Patterns 2003; 3: 131–134.

    Article  CAS  PubMed  Google Scholar 

  41. Chatterjee A, Chang X, Sen T, Ravi R, Bedi A, Sidransky D . Regulation of p53 family member isoform deltaNp63alpha by the nuclear factor-kappaB targeting kinase IkappaBbeta. Cancer Res 2010; 70: 1419–1429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Irie T, Muta T, Takeshige K . TAK1 mediates an activation signal from toll-like receptor(s) to nuclear factor-kappaB in lipopolysaccharide-stimulated macrophages. FEBS Lett 2000; 467: 160–164.

    Article  CAS  PubMed  Google Scholar 

  43. Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K . The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 1999; 398: 252–256.

    Article  CAS  PubMed  Google Scholar 

  44. Calixto J, Campos M, Otuki M, Santos A . Anti-inflammatory compounds of plant origin. Part II. modulation of pro-inflammatory cytokines, chemokines and adhesion molecules. Planta Med 2004; 70: 93–103.

    Article  CAS  PubMed  Google Scholar 

  45. Li H, Zhang Y, Huang X, Sun Y, Jia Y, Li D . Beneficial effect of tripterine on systemic lupus erythematosus induced by active chromatin in BALB/c mice. Eur J Pharmacol 2005; 512: 231–237.

    Article  CAS  PubMed  Google Scholar 

  46. Tao X, Younger J, Fan F, Wang B, Lipsky P . Benefit of an extract of Tripterygium Wilfordii Hook F in patients with rheumatoid arthritis: a double-blind, placebo-controlled study. Arthritis Rheum 2002; 46: 1735–1743.

    Article  PubMed  Google Scholar 

  47. Yang H, Chen D, Cui Q, Yuan X, Dou Q . Celastrol, a triterpene extracted from the Chinese ‘Thunder of God Vine,’ is a potent proteasome inhibitor and suppresses human prostate cancer growth in nude mice. Cancer Res 2006; 66: 4758–4765.

    Article  CAS  PubMed  Google Scholar 

  48. Azuma M, Motegi K, Aota K, Yamashita T, Yoshida H, Sato M . TGF-beta1 inhibits NF-kappaB activity through induction of IkappaB-alpha expression in human salivary gland cells: a possible mechanism of growth suppression by TGF-beta1. Exp Cell Res 1999; 250: 213–222.

    Article  CAS  PubMed  Google Scholar 

  49. Sovak M, Arsura M, Zanieski G, Kavanagh K, Sonenshein G . The inhibitory effects of transforming growth factor beta1 on breast cancer cell proliferation are mediated through regulation of aberrant nuclear factor-kappaB/Rel expression. Cell Growth Differ 1999; 10: 537–544.

    CAS  PubMed  Google Scholar 

  50. Arsura M, Wu M, Sonenshein G . TGF beta 1 inhibits NF-kappa B/Rel activity inducing apoptosis of B cells: transcriptional activation of I kappa B alpha. Immunity 1996; 5: 31–40.

    Article  CAS  PubMed  Google Scholar 

  51. Arsura M, FitzGerald M, Fausto N, Sonenshein G . Nuclear factor-kappaB/Rel blocks transforming growth factor beta1-induced apoptosis of murine hepatocyte cell lines. Cell Growth Differ 1997; 8: 1049–1059.

    CAS  PubMed  Google Scholar 

  52. Sheng H, Shao J, O'Mahony C, Lamps L, Albo D, Isakson P et al. Transformation of intestinal epithelial cells by chronic TGF-beta1 treatment results in downregulation of the type II TGF-beta receptor and induction of cyclooxygenase-2. Oncogene 1999; 18: 855–867.

    Article  CAS  PubMed  Google Scholar 

  53. Lu T, Burdelya L, Swiatkowski S, Boiko A, Howe P, Stark G et al. Secreted transforming growth factor beta2 activates NF-kappaB, blocks apoptosis, and is essential for the survival of some tumor cells. Proc Natl Acad Sci USA 2004; 101: 7112–7117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bhowmick N, Ghiassi M, Bakin A, Aakre M, Lundquist C, Engel M et al. Transforming growth factor-beta1 mediates epithelial to mesenchymal transdifferentiation through a RhoA-dependent mechanism. Mol Biol Cell 2001; 12: 27–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang W, Huang XR, Li AG, Liu F, Li JH, Truong LD et al. Signaling mechanism of TGF-β1 in prevention of renal inflammation: Role of Smad7. J Am Soc Nephrol 2005; 16: 1371–1383.

    Article  CAS  PubMed  Google Scholar 

  56. Yan B, Yang X, Lee TL, Friedman J, Tang J, Van Waes C et al. Genome-wide identification of novel expression signatures reveal distinct patterns and prevalence of binding motifs for p53, nuclear factor-kappaB and other signal transcription factors in head and neck squamous cell carcinoma. Genome Biol 2007; 8: R78.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Friedman J, Nottingham L, Duggal P, Pernas FG, Yan B, Yang XP et al. Deficient TP53 expression, function, and cisplatin sensitivity are restored by quinacrine in head and neck cancer. Clin Cancer Res 2007; 13: 6568–6578.

    Article  CAS  PubMed  Google Scholar 

  58. Lee TL, Yeh J, Friedman J, Yan B, Yang X, Yeh NT et al. A signal network involving coactivated NF-kappaB and STAT3 and altered p53 modulates BAX/BCL-XL expression and promotes cell survival of head and neck squamous cell carcinomas. Int J Cancer 2008; 122: 1987–1998.

    Article  CAS  PubMed  Google Scholar 

  59. Bancroft CC, Chen Z, Yeh J, Sunwoo JB, Yeh NT, Jackson S et al. Effects of pharmacologic antagonists of epidermal growth factor receptor, PI3K and MEK signal kinases on NF-kappaB and AP-1 activation and IL-8 and VEGF expression in human head and neck squamous cell carcinoma lines. Int J Cancer 2002; 99: 538–548.

    Article  CAS  PubMed  Google Scholar 

  60. Wrana JL, Attisano L, Carcamo J, Zentella A, Doody J, Laiho M et al. TGF beta signals through a heteromeric protein kinase receptor complex. Cell 1992; 71: 1003–1014.

    Article  CAS  PubMed  Google Scholar 

  61. Dennler S, Itoh S, Vivien D, ten Dijke P, Huet S, Gauthier JM . Direct binding of Smad3 and Smad4 to critical TGF beta-inducible elements in the promoter of human plasminogen activator inhibitor-type 1 gene. EMBO J 1998; 17: 3091–3100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Supported by intramural projects ZIA-DC-000016 and ZIA-DC-000073 from the National Institute on Deafness and Other Communication Disorders, NIH. Dr Contag Wise was supported by the Clinical Research Training Program, a public–private partnership supported jointly by the NIH and Pfizer Inc. The authors wish to thank Dr Ning T Yeh (NIDCD/NIH) and Chris Silvin (NHGRI/NIH) for their technical assistance. We would like to thank Drs Adam Glick and Ashok Kulkarni for review of the manuscript and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Z Chen or C Van Waes.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freudlsperger, C., Bian, Y., Contag Wise, S. et al. TGF-β and NF-κB signal pathway cross-talk is mediated through TAK1 and SMAD7 in a subset of head and neck cancers. Oncogene 32, 1549–1559 (2013). https://doi.org/10.1038/onc.2012.171

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.171

Keywords

This article is cited by

Search

Quick links