Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Epigenetic silencing of PTPRR activates MAPK signaling, promotes metastasis and serves as a biomarker of invasive cervical cancer

Abstract

Epigenetic modifications are a driving force in carcinogenesis. However, their role in cancer metastasis remains poorly understood. The present study investigated the role of DNA methylation in the cervical cancer metastasis. Here, we report evidence of the overexpression of DNA methyltransferases 3B (DNMT3B) in invasive cervical cancer and of the inhibition of metastasis by DNMT3B interference. Using methyl-DNA immunoprecipitation coupled with microarray analysis, we found that the protein tyrosine phosphatase receptor type R (PTPRR) was silenced through DNMT3B-mediated methylation in the cervical cancer. PTPRR inhibited p44/42 MAPK signaling, the expression of the transcription factor AP1, human papillomavirus (HPV) oncogenes E6/E7 and DNMTs. The methylation status of PTPRR increased in cervical scrapings (n=358) in accordance with disease severity, especially in invasive cancer. Methylation of the PTPRR promoter has an important role in the metastasis and may be a biomarker of invasive cervical cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. WHO/ICO Information Centre on HPV and Cervical Cancer. Human Papillomavirus and Related Cancers in World. Summary Report 2010 2010. 2010/11/15.

  2. zur Hausen H . Cervical carcinoma and human papillomavirus: on the road to preventing a major human cancer. J Natl Cancer Inst 2001; 93: 252–253.

    Article  CAS  PubMed  Google Scholar 

  3. Moody CA, Laimins LA . Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 2010; 10: 550–560.

    Article  CAS  PubMed  Google Scholar 

  4. Ostor AG . Natural history of cervical intraepithelial neoplasia: a critical review. Int J Gynecol Pathol 1993; 12: 186–192.

    Article  CAS  PubMed  Google Scholar 

  5. Nguyen DX, Massague J . Genetic determinants of cancer metastasis. Nat Rev Genet 2007; 8: 341–352.

    Article  CAS  PubMed  Google Scholar 

  6. Jaenisch R, Bird A . Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33 (Suppl): 245–254.

    Article  CAS  PubMed  Google Scholar 

  7. Esteller M . Epigenetics in cancer. N Engl J Med 2008; 358: 1148–1159.

    Article  CAS  PubMed  Google Scholar 

  8. Rodenhiser DI . Epigenetic contributions to cancer metastasis. Clin Exp Metastasis 2009; 26: 5–18.

    Article  CAS  PubMed  Google Scholar 

  9. Sharma S, Kelly TK, Jones PA . Epigenetics in cancer. Carcinogenesis 2010; 31: 27–36.

    Article  CAS  PubMed  Google Scholar 

  10. Paschos K, Allday MJ . Epigenetic reprogramming of host genes in viral and microbial pathogenesis. Trends Microbiol 2010; 18: 439–447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Woodman CB, Collins SI, Young LS . The natural history of cervical HPV infection: unresolved issues. Nat Rev Cancer 2007; 7: 11–22.

    Article  CAS  PubMed  Google Scholar 

  12. Chung MT, Sytwu HK, Yan MD, Shih YL, Chang CC, Yu MH et al. Promoter methylation of SFRPs gene family in cervical cancer. Gynecol Oncol 2009; 112: 301–306.

    Article  CAS  PubMed  Google Scholar 

  13. Liu CY, Chao TK, Su PH, Lee HY, Shih YL, Su HY et al. Characterization of LMX-1A as a metastasis suppressor in cervical cancer. J Pathol 2009; 219: 222–231.

    Article  CAS  PubMed  Google Scholar 

  14. Lin YW, Chung MT, Lai HC, De Yan M, Shih YL, Chang CC et al. Methylation analysis of SFRP genes family in cervical adenocarcinoma. J Cancer Res Clin Oncol 2009; 135: 1665–1674.

    Article  CAS  PubMed  Google Scholar 

  15. Lai HC, Lin YW, Huang RL, Chung MT, Wang HC, Liao YP et al. Quantitative DNA methylation analysis detects cervical intraepithelial neoplasms type 3 and worse. Cancer 2010; Jun: 8.

    Google Scholar 

  16. Wentzensen N, Sherman ME, Schiffman M, Wang SS . Utility of methylation markers in cervical cancer early detection: appraisal of the state-of-the-science. Gynecol Oncol 2009; 112: 293–299.

    Article  CAS  PubMed  Google Scholar 

  17. Lai HC, Lin YW, Huang TH, Yan P, Huang RL, Wang HC et al. Identification of novel DNA methylation markers in cervical cancer. Int J Cancer 2008; 123: 161–167.

    Article  CAS  PubMed  Google Scholar 

  18. Chung MT, Lai HC, Sytwu HK, Yan MD, Shih YL, Chang CC et al. SFRP1 and SFRP2 suppress the transformation and invasion abilities of cervical cancer cells through Wnt signal pathway. Gynecol Oncol 2009; 112: 646–653.

    Article  CAS  PubMed  Google Scholar 

  19. Wilting SM, Snijders PJ, Meijer GA, Ylstra B, van den Ijssel PR, Snijders AM et al. Increased gene copy numbers at chromosome 20q are frequent in both squamous cell carcinomas and adenocarcinomas of the cervix. J Pathol 2006; 209: 220–230.

    Article  CAS  PubMed  Google Scholar 

  20. Talora C, Sgroi DC, Crum CP, Dotto GP . Specific down-modulation of Notch1 signaling in cervical cancer cells is required for sustained HPV-E6/E7 expression and late steps of malignant transformation. Genes Dev 2002; 16: 2252–2263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lichtig H, Gilboa DA, Jackman A, Gonen P, Levav-Cohen Y, Haupt Y et al. HPV16 E6 augments Wnt signaling in an E6AP-dependent manner. Virology 2010; 396: 47–58.

    Article  CAS  PubMed  Google Scholar 

  22. Gu W, Yeo E, McMillan N, Yu C . Silencing oncogene expression in cervical cancer stem-like cells inhibits their cell growth and self-renewal ability. Cancer Gene Ther 2011; 18: 897–905.

    Article  CAS  PubMed  Google Scholar 

  23. Okano M, Bell DW, Haber DA, Li E . DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99: 247–257.

    Article  CAS  PubMed  Google Scholar 

  24. Noordman YE, Jansen PA, Hendriks WJ . Tyrosine-specific MAPK phosphatases and the control of ERK signaling in PC12 cells. J Mol Signal 2006; 1: 4.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Schmitt I, Bitoun E, Manto M . PTPRR, cerebellum, and motor coordination. Cerebellum 2009; 8: 71–73.

    Article  CAS  PubMed  Google Scholar 

  26. Horiguchi K, Shirakihara T, Nakano A, Imamura T, Miyazono K, Saitoh M . Role of Ras signaling in the induction of snail by transforming growth factor-beta. J Biol Chem 2009; 284: 245–253.

    Article  CAS  PubMed  Google Scholar 

  27. Strippoli R, Benedicto I, Perez Lozano ML, Cerezo A, Lopez-Cabrera M, del Pozo MA . Epithelial-to-mesenchymal transition of peritoneal mesothelial cells is regulated by an ERK/NF-kappaB/Snail1 pathway. Dis Model Mech 2008; 1: 264–274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kwon O, Jeong SJ, Kim SO, He L, Lee HG, Jang KL et al. Modulation of E-cadherin expression by K-Ras; involvement of DNA methyltransferase-3b. Carcinogenesis 2010; Apr: 7.

    Google Scholar 

  29. Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA et al. The human DNA methyltransferases (DNMTs) 1, 3a and 3b: coordinate mRNA expression in normal tissues and overexpression in tumors. Nucleic Acids Res 1999; 27: 2291–2298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ahluwalia A, Hurteau JA, Bigsby RM, Nephew KP . DNA methylation in ovarian cancer. II. Expression of DNA methyltransferases in ovarian cancer cell lines and normal ovarian epithelial cells. Gynecol Oncol 2001; 82: 299–304.

    Article  CAS  PubMed  Google Scholar 

  31. Veeck J, Esteller M . Breast cancer epigenetics: from DNA methylation to microRNAs. J Mammary Gland Biol Neoplasia 2010; 15: 5–17.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Girault I, Tozlu S, Lidereau R, Bieche I . Expression analysis of DNA methyltransferases 1, 3A, and 3B in sporadic breast carcinomas. Clin Cancer Res 2003; 9: 4415–4422.

    CAS  PubMed  Google Scholar 

  33. Amara K, Ziadi S, Hachana M, Soltani N, Korbi S, Trimeche M . DNA methyltransferase DNMT3b protein overexpression as a prognostic factor in patients with diffuse large B-cell lymphomas. Cancer Sci 2010; 101 (7): 1722–1730.

    Article  CAS  PubMed  Google Scholar 

  34. Yaqinuddin A, Qureshi SA, Qazi R, Abbas F . Down-regulation of DNMT3b in PC3 cells effects locus-specific DNA methylation, and represses cellular growth and migration. Cancer Cell Int 2008; 8: 13.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Rhee I, Jair KW, Yen RW, Lengauer C, Herman JG, Kinzler KW et al. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature 2000; 404: 1003–1007.

    Article  CAS  PubMed  Google Scholar 

  36. Jones PA, Liang G . Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 2009; 10: 805–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jin B, Yao B, Li JL, Fields CR, Delmas AL, Liu C et al. DNMT1 and DNMT3B modulate distinct polycomb-mediated histone modifications in colon cancer. Cancer Res 2009; 69: 7412–7421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ostman A, Hellberg C, Bohmer FD . Protein-tyrosine phosphatases and cancer. Nat Rev Cancer 2006; 6: 307–320.

    Article  PubMed  Google Scholar 

  39. Veeriah S, Brennan C, Meng S, Singh B, Fagin JA, Solit DB et al. The tyrosine phosphatase PTPRD is a tumor suppressor that is frequently inactivated and mutated in glioblastoma and other human cancers. Proc Natl Acad Sci USA 2009; 106: 9435–9440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Motiwala T, Kutay H, Ghoshal K, Bai S, Seimiya H, Tsuruo T et al. Protein tyrosine phosphatase receptor-type O (PTPRO) exhibits characteristics of a candidate tumor suppressor in human lung cancer. Proc Natl Acad Sci USA 2004; 101: 13844–13849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chirivi RG, Noordman YE, Van der Zee CE, Hendriks WJ . Altered MAP kinase phosphorylation and impaired motor coordination in PTPRR deficient mice. J Neurochem 2007; 101: 829–840.

    Article  CAS  PubMed  Google Scholar 

  42. Menigatti M, Cattaneo E, Sabates-Bellver J, Ilinsky VV, Went P, Buffoli F et al. The protein tyrosine phosphatase receptor type R gene is an early and frequent target of silencing in human colorectal tumorigenesis. Mol Cancer 2009; 8: 124.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Blanco-Aparicio C, Torres J, Pulido R . A novel regulatory mechanism of MAP kinases activation and nuclear translocation mediated by PKA and the PTP-SL tyrosine phosphatase. J Cell Biol 1999; 147: 1129–1136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pulido R, Zuniga A, Ullrich A . PTP-SL and STEP protein tyrosine phosphatases regulate the activation of the extracellular signal-regulated kinases ERK1 and ERK2 by association through a kinase interaction motif. EMBO J 1998; 17: 7337–7350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Berger JC, Vander Griend DJ, Robinson VL, Hickson JA, Rinker-Schaeffer CW . Metastasis suppressor genes: from gene identification to protein function and regulation. Cancer Biol Ther 2005; 4: 805–812.

    Article  CAS  PubMed  Google Scholar 

  46. Hickson JA, Huo D, Vander Griend DJ, Lin A, Rinker-Schaeffer CW, Yamada SD . The p38 kinases MKK4 and MKK6 suppress metastatic colonization in human ovarian carcinoma. Cancer Res 2006; 66: 2264–2270.

    Article  CAS  PubMed  Google Scholar 

  47. Buschbeck M, Eickhoff J, Sommer MN, Ullrich A . Phosphotyrosine-specific phosphatase PTP-SL regulates the ERK5 signaling pathway. J Biol Chem 2002; 277: 29503–29509.

    Article  CAS  PubMed  Google Scholar 

  48. Narisawa-Saito M, Kiyono T . Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: roles of E6 and E7 proteins. Cancer Sci 2007; 98: 1505–1511.

    Article  CAS  PubMed  Google Scholar 

  49. Kikuchi K, Taniguchi A, Yasumoto S . Induction of the HPV16 enhancer activity by Jun-B and c-Fos through cooperation of the promoter-proximal AP-1 site and the epithelial cell type--specific regulatory element in fibroblasts. Virus Genes 1996; 13: 45–52.

    Article  CAS  PubMed  Google Scholar 

  50. Butz K, Hoppe-Seyler F . Transcriptional control of human papillomavirus (HPV) oncogene expression: composition of the HPV type 18 upstream regulatory region. J Virol 1993; 67: 6476–6486.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen H, Zhu G, Li Y, Padia RN, Dong Z, Pan ZK et al. Extracellular signal-regulated kinase signaling pathway regulates breast cancer cell migration by maintaining slug expression. Cancer Res 2009; 69: 9228–9235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eferl R, Wagner EF . AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer 2003; 3: 859–868.

    Article  CAS  PubMed  Google Scholar 

  53. Lemieux E, Bergeron S, Durand V, Asselin C, Saucier C, Rivard N . Constitutively active MEK1 is sufficient to induce epithelial-to-mesenchymal transition in intestinal epithelial cells and to promote tumor invasion and metastasis. Int J Cancer 2009; 125: 1575–1586.

    Article  CAS  PubMed  Google Scholar 

  54. de Wilde J, De-Castro Arce J, Snijders PJ, Meijer CJ, Rosl F, Steenbergen RD . Alterations in AP-1 and AP-1 regulatory genes during HPV-induced carcinogenesis. Cell Oncol 2008; 30: 77–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Prusty BK, Das BC . Constitutive activation of transcription factor AP-1 in cervical cancer and suppression of human papillomavirus (HPV) transcription and AP-1 activity in HeLa cells by curcumin. Int J Cancer 2005; 113: 951–960.

    Article  CAS  PubMed  Google Scholar 

  56. Branca M, Ciotti M, Santini D, Bonito LD, Benedetto A, Giorgi C et al. Activation of the ERK/MAP kinase pathway in cervical intraepithelial neoplasia is related to grade of the lesion but not to high-risk human papillomavirus, virus clearance, or prognosis in cervical cancer. Am J Clin Pathol 2004; 122: 902–911.

    Article  CAS  PubMed  Google Scholar 

  57. Kyo S, Klumpp DJ, Inoue M, Kanaya T, Laimins LA . Expression of AP1 during cellular differentiation determines human papillomavirus E6/E7 expression in stratified epithelial cells. J Gen Virol 1997; 78 (Part 2): 401–411.

    Article  CAS  PubMed  Google Scholar 

  58. Fujisawa T, Joshi BH, Puri RK . IL-13 regulates cancer invasion and metastasis through IL-13Rα2 via ERK/AP-1 pathway in mouse model of human ovarian cancer. Int J Cancer (e-pub ahead of print 19 August 2011).

  59. Sankpal NV, Mayfield JD, Willman MW, Fleming TP, Gillanders WE . Activator protein 1 (AP-1) contributes to EpCAM-dependent breast cancer invasion. Breast Cancer Res 2011; 13: R124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Caberg JH, Hubert PM, Begon DY, Herfs MF, Roncarati PJ, Boniver JJ et al. Silencing of E7 oncogene restores functional E-cadherin expression in human papillomavirus 16-transformed keratinocytes. Carcinogenesis 2008; 29: 1441–1447.

    Article  CAS  PubMed  Google Scholar 

  61. Burgers WA, Blanchon L, Pradhan S, de Launoit Y, Kouzarides T, Fuks F . Viral oncoproteins target the DNA methyltransferases. Oncogene 2007; 26: 1650–1655.

    Article  CAS  PubMed  Google Scholar 

  62. Laurson J, Khan S, Chung R, Cross K, Raj K . Epigenetic repression of E-cadherin by human papillomavirus 16 E7 protein. Carcinogenesis 2010; 31: 918–926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Leemans CR, Braakhuis BJ, Brakenhoff RH . The molecular biology of head and neck cancer. Nat Rev Cancer 2011; 11: 9–22.

    Article  CAS  PubMed  Google Scholar 

  64. Christiansen JJ, Rajasekaran AK . Reassessing epithelial to mesenchymal transition as a prerequisite for carcinoma invasion and metastasis. Cancer Res 2006; 66: 8319–8326.

    Article  CAS  PubMed  Google Scholar 

  65. Thiery JP, Acloque H, Huang RY, Nieto MA . Epithelial-mesenchymal transitions in development and disease. Cell 2009; 139: 871–890.

    Article  CAS  PubMed  Google Scholar 

  66. Hellner K, Mar J, Fang F, Quackenbush J, Munger K . HPV16 E7 oncogene expression in normal human epithelial cells causes molecular changes indicative of an epithelial to mesenchymal transition. Virology 2009; 391: 57–63.

    Article  CAS  PubMed  Google Scholar 

  67. Nussenzweig MC, Alt FW . Antibody diversity: one enzyme to rule them all. Nat Med 2004; 10: 1304–1305.

    Article  CAS  PubMed  Google Scholar 

  68. Rodriguez-Sastre MA, Gonzalez-Maya L, Delgado R, Lizano M, Tsubaki G, Mohar A et al. Abnormal distribution of E-cadherin and beta-catenin in different histologic types of cancer of the uterine cervix. Gynecol Oncol 2005; 97: 330–336.

    Article  CAS  PubMed  Google Scholar 

  69. Nephew KP . What will it take to obtain DNA methylation markers for early cervical cancer detection? Gynecol Oncol 2009; 112: 291–292.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Szalmas A, Konya J . Epigenetic alterations in cervical carcinogenesis. Semin Cancer Biol 2009; 19: 144–152.

    Article  CAS  PubMed  Google Scholar 

  71. Sova P, Feng Q, Geiss G, Wood T, Strauss R, Rudolf V et al. Discovery of novel methylation biomarkers in cervical carcinoma by global demethylation and microarray analysis. Cancer Epidemiol Biomarkers Prev 2006; 15: 114–123.

    Article  CAS  PubMed  Google Scholar 

  72. Wang SS, Smiraglia DJ, Wu YZ, Ghosh S, Rader JS, Cho KR et al. Identification of novel methylation markers in cervical cancer using restriction landmark genomic scanning. Cancer Res 2008; 68: 2489–2497.

    Article  CAS  PubMed  Google Scholar 

  73. Leu YW, Rahmatpanah F, Shi H, Wei SH, Liu JC, Yan PS et al. Double RNA interference of DNMT3b and DNMT1 enhances DNA demethylation and gene reactivation. Cancer Res 2003; 63: 6110–6115.

    CAS  PubMed  Google Scholar 

  74. Weng YI, Huang TH, Yan PS . Methylated DNA immunoprecipitation and microarray-based analysis: detection of DNA methylation in breast cancer cell lines. Methods Mol Biol 2009; 590: 165–176.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant NSC98-2314-B-016-030-MY3 from the National Science Council, Taiwan, ROC (to H-CL); Grant TSGH-C100-010-014-S01 (to M-HY) and TSGH-C100-010-014-S02 (H-CL) from the Tri-Service General Hospital and Teh-Tzer Study Group for Human Medical Research Foundation (to H-CL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H-C Lai.

Ethics declarations

Competing interests

The patent of using PTPRR DNA methylation as a cancer biomarker is pending. The National Defense Medical Center owns the patent. H-C Lai is the inventor. All other authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, PH., Lin, YW., Huang, RL. et al. Epigenetic silencing of PTPRR activates MAPK signaling, promotes metastasis and serves as a biomarker of invasive cervical cancer. Oncogene 32, 15–26 (2013). https://doi.org/10.1038/onc.2012.29

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2012.29

Keywords

This article is cited by

Search

Quick links