Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Hypoxic activation of ATR and the suppression of the initiation of DNA replication through cdc6 degradation

Abstract

Many severely hypoxic cells fail to initiate DNA replication, but the mechanism underlying this observation is unknown. Specifically, although the ataxia-telangiectasia-rad3 related (ATR) kinase has been shown to be activated in hypoxic cells, several studies have not been able to document down-stream consequences of ATR activation in these cells. By clearly defining the DNA replication initiation checkpoint in hypoxic cells, we now demonstrate that ATR is responsible for activating this checkpoint. We show that the hypoxic activation of ATR leads to the phosphorylation-dependent degradation of the cdc25a phosphatase. Downregulation of cdc25a protein by ATR in hypoxic cells decreases CDK2 phosphorylation and activity, which results in the degradation of cdc6 by APC/CCdh1. These events do not occur in hypoxic cells when ATR is depleted, and the initiation of DNA replication is maintained. We therefore present a novel mechanism of cdc6 regulation in which ATR can have a central role in inhibiting the initiation of DNA replication by the regulation of cdc6 by APC/CCdh1. This model provides insight into the biology and therapy of hypoxic tumors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Benmaamar R, Pagano M . (2005). Involvement of the SCF complex in the control of Cdh1 degradation in S-phase. Cell Cycle 4: 1230–1232.

    Article  CAS  PubMed  Google Scholar 

  • Borlado LR, Mendez J . (2008). CDC6: from DNA replication to cell cycle checkpoints and oncogenesis. Carcinogenesis 29: 237–243.

    Article  CAS  PubMed  Google Scholar 

  • Brown EJ, Baltimore D . (2000). ATR disruption leads to chromosomal fragmentation and early embryonic lethality. Genes Dev 14: 397–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Busino L, Donzelli M, Chiesa M, Guardavaccaro D, Ganoth D, Dorrello NV et al. (2003). Degradation of Cdc25A by beta-TrCP during S phase and in response to DNA damage. Nature 426: 87–91.

    Article  CAS  PubMed  Google Scholar 

  • Cook JG, Park CH, Burke TW, Leone G, DeGregori J, Engel A et al. (2002). Analysis of Cdc6 function in the assembly of mammalian prereplication complexes. Proc Natl Acad Sci USA 99: 1347–1352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortez D, Glick G, Elledge SJ . (2004). Minichromosome maintenance proteins are direct targets of the ATM and ATR checkpoint kinases. Proc Natl Acad Sci USA 101: 10078–10083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortez D, Wang Y, Qin J, Elledge SJ . (1999). Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286: 1162–1166.

    Article  CAS  PubMed  Google Scholar 

  • Costanzo V, Shechter D, Lupardus PJ, Cimprich KA, Gottesman M, Gautier J . (2003). An ATR- and Cdc7-dependent DNA damage checkpoint that inhibits initiation of DNA replication. Mol Cell 11: 203–213.

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira PE, Zhang L, Wang Z, Lazo JS . (2009). Hypoxia-mediated regulation of Cdc25A phosphatase by p21 and miR-21. Cell Cycle 8: 3157–3164.

    Article  PubMed  Google Scholar 

  • Gardner LB, Corn PG . (2008). Hypoxic regulation of mRNA expression. Cell Cycle 7: 1916–1924.

    Article  CAS  PubMed  Google Scholar 

  • Gardner LB, Li F, Yang X, Dang CV . (2003). Anoxic fibroblasts activate a replication checkpoint that is bypassed by E1a. Mol Cell Biol 23: 9032–9045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardner LB, Li Q, Park MS, Flanagan WM, Semenza GL, Dang CV . (2001). Hypoxia inhibits G1/S transition through regulation of p27 expression. J Biol Chem 276: 7919–7926.

    Article  CAS  PubMed  Google Scholar 

  • Graeber TG, Peterson JF, Tsai M, Monica K, Fornace Jr AJ, Giaccia AJ . (1994). Hypoxia induces accumulation of p53 protein, but activation of a G1-phase checkpoint by low-oxygen conditions is independent of p53 status. Mol Cell Biol 14: 6264–6277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green SL, Freiberg RA, Giaccia AJ . (2001). p21(Cip1) and p27(Kip1) regulate cell cycle reentry after hypoxic stress but are not necessary for hypoxia-induced arrest. Mol Cell Biol 21: 1196–1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Green SL, Giaccia AJ . (1998). Tumor hypoxia and the cell cycle: implications for malignant progression and response to therapy. Cancer J Sci Am 4: 218–223.

    CAS  PubMed  Google Scholar 

  • Guardavaccaro D, Kudo Y, Boulaire J, Barchi M, Busino L, Donzelli M et al. (2003). Control of meiotic and mitotic progression by the F box protein beta-Trcp1 in vivo. Dev Cell 4: 799–812.

    Article  CAS  PubMed  Google Scholar 

  • Hall JR, Kow E, Nevis KR, Lu CK, Luce KS, Zhong Q et al. (2007). Cdc6 stability is regulated by the Huwe1 ubiquitin ligase after DNA damage. Mol Biol Cell 18: 3340–3350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammer S, To KK, Yoo YG, Koshiji M, Huang LE . (2007). Hypoxic suppression of the cell cycle gene CDC25A in tumor cells. Cell Cycle 6: 1919–1926.

    Article  CAS  PubMed  Google Scholar 

  • Hammond EM, Denko NC, Dorie MJ, Abraham RT, Giaccia AJ . (2002). Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol 22: 1834–1843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond EM, Dorie MJ, Giaccia AJ . (2003a). ATR/ATM targets are phosphorylated by ATR in response to hypoxia and ATM in response to reoxygenation. J Biol Chem 278: 12207–12213.

    Article  CAS  PubMed  Google Scholar 

  • Hammond EM, Dorie MJ, Giaccia AJ . (2004). Inhibition of ATR leads to increased sensitivity to hypoxia/reoxygenation. Cancer Res 64: 6556–6562.

    Article  CAS  PubMed  Google Scholar 

  • Hammond EM, Giaccia AJ . (2004). The role of ATM and ATR in the cellular response to hypoxia and re-oxygenation. DNA Repair (Amst) 3: 1117–1122.

    Article  CAS  Google Scholar 

  • Hammond EM, Green SL, Giaccia AJ . (2003b). Comparison of hypoxia-induced replication arrest with hydroxyurea and aphidicolin-induced arrest. Mutat Res 532: 205–213.

    Article  CAS  PubMed  Google Scholar 

  • Hateboer G, Wobst A, Petersen BO, Le Cam L, Vigo E, Sardet C et al. (1998). Cell cycle-regulated expression of mammalian CDC6 is dependent on E2F. Mol Cell Biol 18: 6679–6697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heffernan TP, Simpson DA, Frank AR, Heinloth AN, Paules RS, Cordeiro-Stone M et al. (2002). An ATR- and Chk1-dependent S checkpoint inhibits replicon initiation following UVC-induced DNA damage. Mol Cell Biol 22: 8552–8561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heffernan TP, Unsal-Kacmaz K, Heinloth AN, Simpson DA, Paules RS, Sancar A et al. (2007). Cdc7-Dbf4 and the human S checkpoint response to UVC. J Biol Chem 282: 9458–9468.

    Article  CAS  PubMed  Google Scholar 

  • Jiang W, McDonald D, Hope TJ, Hunter T . (1999). Mammalian Cdc7-Dbf4 protein kinase complex is essential for initiation of DNA replication. EMBO J 18: 5703–5713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann WK, Cleaver JE, Painter RB . (1980). Ultraviolet radiation inhibits replicon initiation in S phase human cells. Biochim Biophys Acta 608: 191–195.

    Article  CAS  PubMed  Google Scholar 

  • Koshiji M, Kageyama Y, Pete EA, Horikawa I, Barrett JC, Huang LE . (2004). HIF-1alpha induces cell cycle arrest by functionally counteracting Myc. EMBO J 23: 1949–1956.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lau E, Zhu C, Abraham RT, Jiang W . (2006). The functional role of Cdc6 in S-G2/M in mammalian cells. EMBO Rep 7: 425–430.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Machida YJ, Dutta A . (2007). The APC/C inhibitor, Emi1, is essential for prevention of rereplication. Genes Dev 21: 184–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mailand N, Diffley JF . (2005). CDKs promote DNA replication origin licensing in human cells by protecting Cdc6 from APC/C-dependent proteolysis. Cell 122: 915–926.

    Article  CAS  PubMed  Google Scholar 

  • Mailand N, Falck J, Lukas C, Syljuasen RG, Welcker M, Bartek J et al. (2000). Rapid destruction of human Cdc25A in response to DNA damage. Science 288: 1425–1429.

    Article  CAS  PubMed  Google Scholar 

  • Martin L, Kimball SR, Gardner LB . (2010). Regulation of the unfolded protein response by eif2bdelta isoforms. J Biol Chem 285: 31944–31953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez J, Stillman B . (2000). Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol 20: 8602–8612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montagnoli A, Valsasina B, Brotherton D, Troiani S, Rainoldi S, Tenca P et al. (2006). Identification of Mcm2 phosphorylation sites by S-phase-regulating kinases. J Biol Chem 281: 10281–10290.

    Article  CAS  PubMed  Google Scholar 

  • Olcina M, Lecane PS, Hammond EM . (2010). Targeting hypoxic cells through the DNA damage response. Clin Cancer Res 16: 5624–5629.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olive PL, Banath JP, Durand RE . (2002). The range of oxygenation in SiHa tumor xenografts. Radiat Res 158: 159–166.

    Article  CAS  PubMed  Google Scholar 

  • Reimann JD, Freed E, Hsu JY, Kramer ER, Peters JM, Jackson PK . (2001). Emi1 is a mitotic regulator that interacts with Cdc20 and inhibits the anaphase promoting complex. Cell 105: 645–655.

    Article  CAS  PubMed  Google Scholar 

  • Schmaltz C, Hardenbergh PH, Wells A, Fisher DE . (1998). Regulation of proliferation-survival decisions during tumor cell hypoxia. Mol Cell Biol 18: 2845–2854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivaprasad U, Machida YJ, Dutta A . (2007). APC/C--the master controller of origin licensing? Cell Div 2: 8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sotillo E, Garriga J, Padgaonkar A, Kurimchak A, Cook JG, Grana X . (2009). Coordinated activation of the origin licensing factor CDC6 and CDK2 in resting human fibroblasts expressing SV40 small T antigen and cyclin E. J Biol Chem 284: 14126–14135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeber K, Mills AD, Kubota Y, Krude T, Romanowski P, Marheineke K et al. (1998). Cdc6 protein causes premature entry into S phase in a mammalian cell-free system. EMBO J 17: 7219–7229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vassin VM, Wold MS, Borowiec JA . (2004). Replication protein A (RPA) phosphorylation prevents RPA association with replication centers. Mol Cell Biol 24: 1930–1943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaupel P, Schlenger K, Knoop C, Hockel M . (1991). Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 51: 3316–3322.

    CAS  PubMed  Google Scholar 

  • Vigo E, Muller H, Prosperini E, Hateboer G, Cartwright P, Moroni MC et al. (1999). CDC25A phosphatase is a target of E2F and is required for efficient E2F-induced S phase. Mol Cell Biol 19: 6379–6395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou L, Elledge SJ . (2003). Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300: 1542–1548.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate the kind gifts of reagents from John Dillfey and Stephen Elledge. Luca Busino, Michele Pagano,Vincenzo D’Angiolella provided reagents and helpful advice. This work was supported in part by DK08164 and the Feldstein Foundation. LBG is the Saul J Farber Assistant Professor of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L B Gardner.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, L., Rainey, M., Santocanale, C. et al. Hypoxic activation of ATR and the suppression of the initiation of DNA replication through cdc6 degradation. Oncogene 31, 4076–4084 (2012). https://doi.org/10.1038/onc.2011.585

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.585

Keywords

This article is cited by

Search

Quick links