Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Melatonin triggers p53Ser phosphorylation and prevents DNA damage accumulation

Abstract

Several epidemiological studies have shown that high levels of melatonin, an indolic hormone secreted mainly by the pineal gland, reduce the risks of developing cancer, thus suggesting that melatonin triggers the activation of tumor-suppressor pathways that lead to the prevention of malignant transformation. This paper illustrates that melatonin induces phosphorylation of p53 at Ser-15 inhibiting cell proliferation and preventing DNA damage accumulation of both normal and transformed cells. This activity requires p53 and promyelocytic leukemia (PML) expression and efficient phosphorylation of p53 at Ser-15 residue. Melatonin-induced p53 phosphorylation at Ser-15 residue does not require ataxia telangiectasia-mutated activity, whereas it is severely impaired upon chemical inhibition of p38 mitogen-activated protein kinase activity. By and large, these findings imply that the activation of the p53 tumor-suppressor pathway is a critical mediator of melatonin and its anticancer effects. Therefore, it provides molecular insights into increasing observational evidence for the role that melatonin has in cancer prevention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Alpert M, Carome E, Kubulins V, Hansler R . (2009). Nighttime use of special spectacles or light bulbs that block blue light may reduce the risk of cancer. Med Hypotheses 73: 324–325.

    Article  Google Scholar 

  • Banin S, Moyal L, Shieh S, Taya Y, Anderson CW, Chessa L et al. (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281: 1674–1677.

    Article  CAS  Google Scholar 

  • Bernardi R, Scaglioni PP, Bergmann S, Horn HF, Vousden KH, Pandolfi PP . (2004). PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 6: 665–672.

    Article  CAS  Google Scholar 

  • Carbone R, Pearson M, Minucci S, Pelicci PG . (2002). PML NBs associate with the hMre11 complex and p53 at sites of irradiation induced DNA damage. Oncogene 21: 1633–1640.

    Article  CAS  Google Scholar 

  • Chiu SJ, Chao JI, Lee YJ, Hsu TS . (2008). Regulation of gamma-H2AX and securin contribute to apoptosis by oxaliplatin via a p38 mitogen-activated protein kinase-dependent pathway in human colorectal cancer cells. Toxicol Lett 179: 63–70.

    Article  CAS  Google Scholar 

  • Faragher RG, Kill IR, Hunter JA, Pope FM, Tannock C, Shall S . (1993). The gene responsible for Werner syndrome may be a cell division ‘counting’ gene. Proc Natl Acad Sci USA 90: 12030–12034.

    Article  CAS  Google Scholar 

  • Fernandez-Capetillo O, Chen HT, Celeste A, Ward I, Romanienko PJ, Morales JC et al. (2002). DNA damage-induced G2-M checkpoint activation by histone H2AX and 53BP1. Nat Cell Biol 4: 993–997.

    Article  CAS  Google Scholar 

  • Flynn-Evans EE, Stevens RG, Tabandeh H, Schernhammer ES, Lockley SW . (2009). Total visual blindness is protective against breast cancer. Cancer Causes Control 20: 1753–1756.

    Article  Google Scholar 

  • Guo A, Salomoni P, Luo J, Shih A, Zhong S, Gu W et al. (2000). The function of PML in p53-dependent apoptosis. Nat Cell Biol 2: 730–736.

    Article  CAS  Google Scholar 

  • Halvorsen TL, Leibowitz G, Levine F . (1999). Telomerase activity is sufficient to allow transformed cells to escape from crisis. Mol Cell Biol 19: 1864–1870.

    Article  CAS  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M . (1997). Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.

    Article  CAS  Google Scholar 

  • Helton ES, Chen X . (2007). p53 modulation of the DNA damage response. J Cell Biochem 100: 883–896.

    Article  CAS  Google Scholar 

  • Ji C, Ren F, Ma H, Xu M . (2010). The roles of p38MAPK and caspase-3 in DADS-induced apoptosis in human HepG2 cells. J Exp Clin Cancer Res 29: 50.

    Article  Google Scholar 

  • Kane MA, Johnson A, Nash AE, Boose D, Mathai G, Balmer C et al. (1994). Serum melatonin levels in melanoma patients after repeated oral administration. Melanoma Res 4: 59–65.

    Article  CAS  Google Scholar 

  • Kim CH, Yoo YM . (2010). Melatonin induces apoptotic cell death via p53 in LNCaP cells. Korean J Physiol Pharmacol 14: 365–369.

    Article  CAS  Google Scholar 

  • Kinner A, Wu W, Staudt C, Iliakis G . (2008). Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36: 5678–5694.

    Article  CAS  Google Scholar 

  • Kliukiene J, Tynes T, Andersen A . (2001). Risk of breast cancer among Norwegian women with visual impairment. Br J Cancer 84: 397–399.

    Article  CAS  Google Scholar 

  • Kloog I, Haim A, Stevens RG, Barchana M, Portnov BA . (2008). Light at night co-distributes with incident breast but not lung cancer in the female population of Israel. Chronobiol Int 25: 65–81.

    Article  Google Scholar 

  • Kloog I, Haim A, Stevens RG, Portnov BA . (2009). Global co-distribution of light at night (LAN) and cancers of prostate, colon, and lung in men. Chronobiol Int 26: 108–125.

    Article  Google Scholar 

  • Kubbutat MH, Jones SN, Vousden KH . (1997). Regulation of p53 stability by Mdm2. Nature 387: 299–303.

    Article  CAS  Google Scholar 

  • Lakin ND, Jackson SP . (1999). Regulation of p53 in response to DNA damage. Oncogene 18: 7644–7655.

    Article  CAS  Google Scholar 

  • Lapi E, Di Agostino S, Donzelli S, Gal H, Domany E, Rechavi G et al. (2008). PML, YAP, and p73 are components of a proapoptotic autoregulatory feedback loop. Mol Cell 32: 803–814.

    Article  CAS  Google Scholar 

  • Lipton J, Megerian JT, Kothare SV, Cho YJ, Shanahan T, Chart H et al. (2009). Melatonin deficiency and disrupted circadian rhythms in pediatric survivors of craniopharyngioma. Neurology 73: 323–325.

    Article  CAS  Google Scholar 

  • Lukas J, Bartek J . (2009). DNA repair: new tales of an old tail. Nature 458: 581–583.

    Article  CAS  Google Scholar 

  • Markantonis SL, Tsakalozou E, Paraskeva A, Staikou C, Fassoulaki A . (2008). Melatonin pharmacokinetics in premenopausal and postmenopausal healthy female volunteers. J Clin Pharmacol 48: 240–245.

    Article  CAS  Google Scholar 

  • Mediavilla MD, Cos S, Sanchez-Barcelo EJ . (1999). Melatonin increases p53 and p21WAF1 expression in MCF-7 human breast cancer cells in vitro. Life Sci 65: 415–420.

    Article  CAS  Google Scholar 

  • Nur EKA, Li TK, Zhang A, Qi H, Hars ES, Liu LF . (2003). Single-stranded DNA induces ataxia telangiectasia mutant (ATM)/p53-dependent DNA damage and apoptotic signals. J Biol Chem 278: 12475–12481.

    Article  Google Scholar 

  • Oren M . (2003). Decision making by p53: life, death and cancer. Cell Death Differ 10: 431–442.

    Article  CAS  Google Scholar 

  • Pearson M, Pelicci PG . (2001). PML interaction with p53 and its role in apoptosis and replicative senescence. Oncogene 20: 7250–7256.

    Article  CAS  Google Scholar 

  • Roy D, Angelini NL, Fujieda H, Brown GM, Belsham DD . (2001). Cyclical regulation of GnRH gene expression in GT1-7 GnRH-secreting neurons by melatonin. Endocrinology 142: 4711–4720.

    Article  CAS  Google Scholar 

  • Sainz RM, Mayo JC, Tan DX, Leon J, Manchester L, Reiter RJ . (2005). Melatonin reduces prostate cancer cell growth leading to neuroendocrine differentiation via a receptor and PKA independent mechanism. Prostate 63: 29–43.

    Article  CAS  Google Scholar 

  • Schernhammer ES, Berrino F, Krogh V, Secreto G, Micheli A, Venturelli E et al. (2010). Urinary 6-sulphatoxymelatonin levels and risk of breast cancer in premenopausal women: the ORDET cohort. Cancer Epidemiol Biomarkers Prev 19: 729–737.

    Article  CAS  Google Scholar 

  • Schernhammer ES, Berrino F, Krogh V, Secreto G, Micheli A, Venturelli E et al. (2008). Urinary 6-sulfatoxymelatonin levels and risk of breast cancer in postmenopausal women. J Natl Cancer Inst 100: 898–905.

    Article  CAS  Google Scholar 

  • She QB, Chen N, Dong Z . (2000). ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem 275: 20444–20449.

    Article  CAS  Google Scholar 

  • Shieh SY, Ikeda M, Taya Y, Prives C . (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91: 325–334.

    Article  CAS  Google Scholar 

  • Shiloh Y . (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3: 155–168.

    Article  CAS  Google Scholar 

  • Shrivastav M, De Haro LP, Nickoloff JA . (2008). Regulation of DNA double-strand break repair pathway choice. Cell Res 18: 134–147.

    Article  CAS  Google Scholar 

  • Sliwinski T, Rozej W, Morawiec-Bajda A, Morawiec Z, Reiter R, Blasiak J . (2007). Protective action of melatonin against oxidative DNA damage: chemical inactivation versus base-excision repair. Mutat Res 634: 220–227.

    Article  CAS  Google Scholar 

  • Unger T, Sionov RV, Moallem E, Yee CL, Howley PM, Oren M et al. (1999). Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene 18: 3205–3212.

    Article  CAS  Google Scholar 

  • Vakkuri O, Leppaluoto J, Kauppila A . (1985). Oral administration and distribution of melatonin in human serum, saliva and urine. Life Sci 37: 489–495.

    Article  CAS  Google Scholar 

  • Wang Y, Prives C . (1995). Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 376: 88–91.

    Article  CAS  Google Scholar 

  • Xi SC, Tam PC, Brown GM, Pang SF, Shiu SY . (2000). Potential involvement of mt1 receptor and attenuated sex steroid-induced calcium influx in the direct anti-proliferative action of melatonin on androgen-responsive LNCaP human prostate cancer cells. J Pineal Res 29: 172–183.

    Article  CAS  Google Scholar 

  • Xian ZH, Cong WM, Zhang SH, Wu MC . (2005). Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment. World J Gastroenterol 11: 4102–4107.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr E O’Neill and Dr Y Shiloh for gift of reagents and cell lines. Moreover, we also thank T Merlino for kindly revising the English text. This study was supported by Associazione Italiana Ricerca sul Cancro (AIRC, to SS and GB), Ministero della Salute (GB and PM), Fondazione Veronesi (GB), FIRB (GB), New Idea Award (SS) and Fondazione Italiana Ricerca sul Cancro (FIRC, fellowship to RS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Strano.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website )

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Santoro, R., Marani, M., Blandino, G. et al. Melatonin triggers p53Ser phosphorylation and prevents DNA damage accumulation. Oncogene 31, 2931–2942 (2012). https://doi.org/10.1038/onc.2011.469

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.469

Keywords

This article is cited by

Search

Quick links