Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NF-κB mediates radio-sensitization by the PARP-1 inhibitor, AG-014699

A Correction to this article was published on 09 December 2022

This article has been updated

Abstract

The stress-inducible transcription factor, nuclear factor (NF)-κB induces genes involved in proliferation and apoptosis. Aberrant NF-κB activity is common in cancer and contributes to therapeutic-resistance. Poly(ADP-ribose) polymerase-1 (PARP-1) is activated during DNA strand break repair and is a known transcriptional co-regulator. Here, we investigated the role of PARP-1 function during NF-κB activation using p65 small interfering RNA (siRNA), PARP siRNA or the potent PARP-1 inhibitor, AG-014699. Survival and apoptosis assays showed that NF-κB p65−/− cells were more sensitive to ionizing radiation (IR) than p65+/+ cells. Co-incubation with p65 siRNA, PARP siRNA or AG-014699 radio-sensitized p65+/+, but not p65−/− cells, demonstrating that PARP-1 mediates its effects on survival via NF-κB. Single-strand break (SSB) repair kinetics, and the effect SSB repair inhibition by AG-014699 were similar in p65+/+ and p65−/− cells. As preventing SSB repair did not radio-sensitize p65−/− cells, we conclude that radio-sensitization by AG-014699 is due to downstream inhibition of NF-κB activation, and independent of SSB repair inhibition. PARP-1 catalytic activity was essential for IR-induced p65 DNA binding and NF-κB-dependent gene transcription, whereas for tumor necrosis factor (TNF)-α-treated cells, PARP-1 protein alone was sufficient. We hypothesize that this stimulus-dependent differential is mediated via stimulation of the poly(ADP-ribose) polymer, which was induced following IR, not TNF-α. Targeting DNA damage-activated NF-κB using AG-014699 may therefore overcome toxicity observed with classical NF-κB inhibitors without compromising other vital inflammatory functions. These data highlight the potential of PARP-1 inhibitors to overcome NF-κB-mediated therapeutic resistance and widens the spectrum of cancers in which these agents may be utilized.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Change history

References

  • Althaus FR, Hofferer L, Kleczkowska HE, Malanga M, Naegeli H, Panzeter PL et al. (1994). Histone shuttling by poly ADP-ribosylation. Mol Cell Biochem 138: 53–59.

    Article  CAS  Google Scholar 

  • Barkett M, Gilmore T . (1999). Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene 18: 6910–6924.

    Article  CAS  Google Scholar 

  • Basseres DS, Baldwin AS . (2006). Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 25: 6817–6830.

    Article  CAS  Google Scholar 

  • Biswas DK, Shi Q, Baily S, Strickland I, Ghosh S, Pardee AB et al. (2004). NF-kappa B activation in human breast cancer specimens and its role in cell proliferation and apoptosis. Proc Natl Acad Sci USA 101: 10137–10142.

    Article  CAS  Google Scholar 

  • Bonicalzi ME, Haince JF, Droit A, Poirier GG . (2005). Regulation of poly(ADP-ribose) metabolism by poly(ADP-ribose) glycohydrolase: where and when? Cell Mol Life Sci 62: 739–750.

    Article  CAS  Google Scholar 

  • Brach MA, Hass R, Sherman ML, Gunji H, Weichselbaum R, Kufe D . (1991). Ionizing radiation induces expression and binding activity of the nuclear factor kappa B. J Clin Invest 88: 691–695.

    Article  CAS  Google Scholar 

  • Brady ME, Ozanne DM, Gaughan L, Waite I, Cook S, Neal DE et al. (1999). Tip60 is a nuclear hormone receptor coactivator. J Biol Chem 274: 17599–17604.

    Article  CAS  Google Scholar 

  • Burger PC, Vogel FS, Green SB, Strike TA . (1985). Glioblsstoma multiforme and anaplastic astrocytoma pathologic criteria and prognostic implications. Cancer 56: 1106–1111.

    Article  CAS  Google Scholar 

  • Chang WJ, Alvarez-Gonzalez R . (2001). The sequence-specific DNA binding of NF-kappa B is reversibly regulated by the automodification reaction of poly (ADP-ribose) polymerase 1. J Biol Chem 276: 47664–47670.

    Article  CAS  Google Scholar 

  • Chariot A . (2009). The NF-kappaB-independent functions of IKK subunits in immunity and cancer. Trends Cell Biol 19: 404–413.

    Article  CAS  Google Scholar 

  • Clevers H . (2004). At the crossroads of inflammation and cancer. Cell 118: 671–674.

    Article  CAS  Google Scholar 

  • Criollo A, Senovilla L, Authier H, Chiara Maiuri M, Morselli E, Vitale I et al. (2010). The IKK complex contributes to the induction of autophagy. EMBO J 29: 619–631.

    Article  CAS  Google Scholar 

  • Criswell T, Leskov K, Miyamoto S, Luo G, Boothman DA . (2003). Transcription factors activated in mammalian cells after clinically relevant doses of ionizing radiation. Oncogene 22: 5813–5827.

    Article  CAS  Google Scholar 

  • Daniel RA, Rozanska AL, Thomas HD, Mulligan EA, Drew Y, Castelbuono DJ et al. (2009). Inhibition of poly(ADP-ribose) polymerase-1 enhances temozolomide and topotecan activity against childhood neuroblastoma. Clin Cancer Res 15: 1241–1249.

    Article  CAS  Google Scholar 

  • Drew Y, Mulligan EA, Vong WT, Thomas HD, Kahn S, Kyle S et al. (2010). Therapeutic potential of poly(ADP-ribose) polymerase inhibitor AG014699 in human cancers with mutated or methylated BRCA1 or BRCA2. J Natl Cancer Inst 103: 334–346.

    Article  Google Scholar 

  • Drew Y, Plummer R . (2009). PARP inhibitors in cancer therapy: two modes of attack on the cancer cell widening the clinical applications. Drug Resist Updat 12: 153–156.

    Article  CAS  Google Scholar 

  • Durkacz BW, Omidiji O, Gray DA, Shall S . (1980). (ADP-ribose) participates in DNA excision repair. Nature 283: 593–596.

    Article  CAS  Google Scholar 

  • Ghosh G, Huang DB, Huxford T . (1999). Structural insights into NF-κB/IκB signaling. Gene Ther Mol Biol 4: 75–82.

    Google Scholar 

  • Ghosh S, Karin M . (2002). Missing pieces in the NF-kappaB puzzle. Cell 109 (Suppl): S81–S96.

    Article  CAS  Google Scholar 

  • Gilmore TD, Herscovitch M . (2006). Inhibitors of NF-kappaB signaling: 785 and counting. Oncogene 25: 6887–6899.

    Article  CAS  Google Scholar 

  • Grossman M, Metcalf D, Merryfull J, Beg A, Baltimore D, Gerondakis S . (1999). The combined absence of the transcription factors Rel and RelA leads to multiple hemopoietic cell defects. Proc Natl Acad Sci USA 96: 11848–11853.

    Article  Google Scholar 

  • Hassa PO, Covic M, Hasan S, Imhof R, Hottiger MO . (2001). The enzymatic and DNA binding activity of PARP-1 are not required for NF-kappa B coactivator function. J Biol Chem 276: 45588–45597.

    Article  CAS  Google Scholar 

  • Hassa PO, Haenni SS, Buerki C, Meier NI, Lane WS, Owen H et al. (2005). Acetylation of poly(ADP-ribose) polymerase-1 by p300/CREB-binding protein regulates coactivation of NF-kappaB-dependent transcription. J Biol Chem 280: 40450–40464.

    Article  CAS  Google Scholar 

  • Hassa PO, Hottiger MO . (1999). A role of poly (ADP-ribose) polymerase in NF-kappaB transcriptional activation. Biol Chem 380: 953–959.

    Article  CAS  Google Scholar 

  • Hewamana S, Alghazal S, Lin TT, Clement M, Jenkins C, Guzman ML et al. (2008a). The NF-kappaB subunit Rel A is associated with in vitro survival and clinical disease progression in chronic lymphocytic leukemia and represents a promising therapeutic target. Blood 111: 4681–4689.

    Article  CAS  Google Scholar 

  • Hewamana S, Lin TT, Jenkins C, Burnett AK, Jordan CT, Fegan C et al. (2008b). The novel nuclear factor-kappaB inhibitor LC-1 is equipotent in poor prognostic subsets of chronic lymphocytic leukemia and shows strong synergy with fludarabine. Clin Cancer Res 14: 8102–8111.

    Article  CAS  Google Scholar 

  • Hewamana S, Lin TT, Rowntree C, Karunanithi K, Pratt G, Hills R et al. (2009). Rel a is an independent biomarker of clinical outcome in chronic lymphocytic leukemia. J Clin Oncol 27: 763–769.

    Article  Google Scholar 

  • Jackson A, Linsley P . (2004). Noise amidst the silence: off target effects of siRNAs? Trends Genet 20: 521–524.

    Article  CAS  Google Scholar 

  • Jung M, Dritschilo A . (2001). NF-kappa B signaling pathway as a target for human tumor radiosensitization. Semin Radiat Oncol 11: 346–351.

    Article  CAS  Google Scholar 

  • Kanzawa T, Ito H, Kondo Y, Kondo S . (2003). Current and future gene therapy for malignant gliomas. J Biomed Biotechnol 2003: 25–34.

    Article  Google Scholar 

  • Kauppinen TM, Swanson RA . (2005). Poly(ADP-ribose); polymerase-1 promotes microgial activation, proliferation and matrix metalloproteinase-9 mediated neuron death. J Immunol 174: 2288–2296.

    Article  CAS  Google Scholar 

  • Kraus WL, Lis JT . (2003). PARP goes transcription. Cell 113: 677–683.

    Article  CAS  Google Scholar 

  • Martin-Oliva D, Aguliar-Quesada R, O'valle F, Munoz-Gamez JA, Martinez-Romero R, Garcia Del-Moral R et al. (2006). Inhibition of poly(ADP-ribose) polymerase modulates tumor-related gene expression, including hypoxia-inducible factor-1 activation, during skin carcinogenesis. Cancer Res 66: 5744–5756.

    Article  CAS  Google Scholar 

  • Mulligan EA, Hunter JE, Baird AEG, Elliott SL, Summerfield GP, Hamlen K et al. (2010). Relationships between aberrant activity of the NF-κB subunits and outcome in chronic lymphocytic leukaemia: the dual role of DNA damage sensor kinases. Blood 116: 1477.

    Google Scholar 

  • Ogorek B, Bryant PE . (1985). Repair of DNA single-strand breaks in X-irradiated yeast. II. Kinetics of repair as measured by the DNA-unwinding method. Mutat Res 146: 63–70.

    CAS  PubMed  Google Scholar 

  • Oliver FJ, Menissier de Murcia J, Nacci C, Decker P, Andriantsitohaina R, Muller S et al. (1999). Resistance to endotoxic shock as a consequence of defective NF-kappaB activation in poly (ADP-ribose) polymerase-1 deficient mice. EMBO J 18: 4446–4454.

    Article  CAS  Google Scholar 

  • Prasad S, Ravindran J, Aggarwal B . (2009). NF-κB and cancer: how intimate is this relationship. Mol Cell Biochem 336: 25–37.

    Article  Google Scholar 

  • Plummer ER, Middleton MR, Jones C, Olsen A, Hickson I, McHugh P et al. (2005a). Temozolomide pharmacodynamics in patients with metastatic melanoma: DNA damage and activity of repair enzymes O6-alkylguanine alkyltransferase and poly(ADP-ribose) polymerase-1. Clin Cancer Res 11: 3402–3409.

    Article  CAS  Google Scholar 

  • Plummer ER, Jones C, Middleton MR, Wilson R, Evans J, Olsen A et al. (2008). Phase I study of the poly(ADP-ribose) polymerase inhibitor, AG014699, in combination with temozolomide in patients with advanced solid tumors. Clin Cancer Res 14: 7917–7923.

    Article  CAS  Google Scholar 

  • Plummer R, Lorigan P, Evans J, Steven N, Middleton M, Wilson R et al. (2006). First and final report of a phase II study of the poly(ADP-ribose) polymerase (PARP) inhibitor, AG014699, in combination with temozolomide (TMZ) in patients with metastatic malignantmelanoma (MM). J Clin Oncol 24 No. 18S, Part I: 8013.

    Google Scholar 

  • Plummer R, Middleton M, Wilson R, Jones C, Evans J, Robson L et al. (2005b). First in human phase I trial of the PARP inhibitor AG-014699 with temozolomide (TMZ) in patients (pts) with advanced solid tumors. J Clin Oncol 23 No.16S, Part I: 3065.

    Article  Google Scholar 

  • Russo SM, Tepper JE, Baldwin Jr AS, Lui R, Adams J, Elliott P et al. (2001). Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kappaB. Int J Radiat Oncol Biol Phys 50: 183–193.

    Article  CAS  Google Scholar 

  • Sahijdak WM, Yang CR, Zuckerman JS, Meyers M, Boothman DA . (1994). Alterations in transcription factor binding in radioresistant human melanoma cells after ionizing radiation. Radiat Res 138: S47–S51.

    Article  CAS  Google Scholar 

  • Slama JT, Aboul-Ela N, Goli DM, Cheesman BV, Simmons AM, Jacobson MK . (1995). Specific inhibition of poly(ADP-ribose) glycohydrolase by adenosine diphosphate (hydroxymethyl)pyrrolidinediol. J Med Chem 38: 389–393.

    Article  CAS  Google Scholar 

  • Smith S . (2001). The world according to PARP. Trends Biochem Sci 26: 174–179.

    Article  CAS  Google Scholar 

  • Stilmann M, Hinz M, Arslan SC, Zimmer A, Schreiber V, Schreiderit C . (2009). A nuclear poly(ADP-ribose)-dependent signalosome confers DNA damage-induced IkappaB kinase activation. Mol Cell 36: 365–378.

    Article  CAS  Google Scholar 

  • Trucco C, Javier Oliver F, de Murcia G, Menissier de Murcia J . (1998). DNA repair defect in poly(ADP-ribose) polymerase-deficient cell lines. Nucleic Acid Res 26: 2644–2649.

    Article  CAS  Google Scholar 

  • Tschaharganeh D, Ehemann V, Nussbaum T, Schrimacher P, Breuhahn K . (2007). Non-specific effects of siRNAs on tumor cells with implications on therapeutic applicability using RNA interference. Pathol Oncol Res 13: 84–90.

    Article  CAS  Google Scholar 

  • Turco MC, Romano MF, Petrella A, Bisgoni R, Tassone P, Ventuna S . (2004). NF-kappaB/Rel-mediated regulation of apoptosis in hematologic malignancies and normal hematopoietic progenitors. Leukemia 18: 11–17.

    Article  CAS  Google Scholar 

  • Ueda K, Hayaishi O . (1985). ADP-RIBOSYLATION Ann. Rev Biochem 54: 73–100.

    Article  CAS  Google Scholar 

  • Veuger SJ, Curtin NJ, Richardson CJ, Smith GC, Durkacz BW . (2003). Radiosensitization and DNA repair inhibition by the combined use of novel inhibitors of DNA-dependent protein kinase and poly(ADP-ribose) polymerase-1. Cancer Res 63: 6008–6015.

    CAS  Google Scholar 

  • Veuger SJ, Hunter JE, Durkacz BW . (2009). Ionizing radiation-induced NF-kappaB activation requires PARP-1 function to confer radioresistance. Oncogene 28: 832–842.

    Article  CAS  Google Scholar 

  • Wang CY, Mayo MW, Baldwin Jr AS . (1996). TNF and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 274: 784–787.

    Article  CAS  Google Scholar 

  • Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin Jr AS . (1998). NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281: 1680–1683.

    Article  CAS  Google Scholar 

  • Wang H, Wang H, Zhang W, Huang HJ, Liao WS, Fuller GN . (2004). Analysis of the activation status of Akt, NFkappaB and Stat3 in human diffuse gliomas. Lab Invest 84: 941–951.

    Article  CAS  Google Scholar 

  • Wu JT, Kral JG . (2005). The NF-kappaB/IkappaB signaling system: a molecular target in breast cancer therapy. J Surg Res 123: 158–169.

    Article  CAS  Google Scholar 

  • Zaremba T, Ketzer P, Cole M, Coulthard S, Plummer ER, Curtin NJ . (2009). Poly(ADP-ribose) polymerase-1 polymorphisms, expression and activity in selected human tumour cell lines. Br J Cancer I 101: 256–262.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Pfizer for the supply of AG-014699. This work was supported by Cancer Research UK, grant number C7369/A8048.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S J Veuger.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hunter, J., Willmore, E., Irving, J. et al. NF-κB mediates radio-sensitization by the PARP-1 inhibitor, AG-014699. Oncogene 31, 251–264 (2012). https://doi.org/10.1038/onc.2011.229

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.229

Keywords

This article is cited by

Search

Quick links