Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The low frequency of clinical resistance to PDGFR inhibitors in myeloid neoplasms with abnormalities of PDGFRA might be related to the limited repertoire of possible PDGFRA kinase domain mutations in vitro

Abstract

Myeloproliferation with prominent eosinophilia is associated with rearrangements of PDGFR-A or -B. The most common rearrangement is FIP1L1-PDGFRA (FP). The majority of patients with PDGFR-rearranged myeloproliferation respond to treatment with imatinib. In contrast to BCR–ABL-positive chronic myelogenous leukemia, only few cases of imatinib resistance and mutations of the FP kinase domain have been described so far. We hypothesized that the number of critical residues mediating imatinib resistance in FP in contrast to BCR–ABL might be limited. We performed an established systematic and comprehensive in vitro resistance screen to determine the pattern and frequency of possible TKI resistance mutations in FP. We identified 27 different FP kinase domain mutations including 25 novel variants, which attenuated response to imatinib, nilotinib or sorafenib. However, the majority of these exchanges did not confer complete inhibitor resistance. At clinically achievable drug concentrations, FP/T674I predominated with imatinib, whereas with nilotinib and sorafenib, FP/D842V and the compound mutation T674I+T874I became prevalent. Our results suggest that the PDGFR kinase domain contains a limited number of residues where exchanges critically interfere with binding of and inhibition by available PDGFR kinase inhibitors at achievable concentrations, which might explain the low frequency of imatinib resistance in this patient population. In addition, these findings would help to select the appropriate second-line drug in cases of imatinib-resistant disease and may be translated to other neoplasms driven by activated forms of PDGFR-A or -B.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Apperley JF . (2007). Part I: mechanisms of resistance to imatinib in chronic myeloid leukaemia. Lancet Oncol 8:1018–1029.

    Article  CAS  PubMed  Google Scholar 

  • Azam M, Latek RR, Daley GQ . (2003). Mechanisms of autoinhibition and STI-571/imatinib resistance revealed by mutagenesis of BCR-ABL. Cell 112: 831–843.

    Article  CAS  PubMed  Google Scholar 

  • Baccarani M, Cortes J, Pane F, Niederwieser D, Saglio G, Apperley J et al. (2009). Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol 27: 6041–6051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradeen HA, Eide CA, O'Hare T, Johnson KJ, Willis SG, Lee FY et al. (2006). Comparison of imatinib mesylate, dasatinib (BMS-354825), and nilotinib (AMN107) in an N-ethyl-N-nitrosourea (ENU)-based mutagenesis screen: high efficacy of drug combinations. Blood 108: 2332–2338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Branford S, Melo JV, Hughes TP . (2009). Selecting optimal second-line tyrosine kinase inhibitor therapy for chronic myeloid leukemia patients after imatinib failure: does the BCR-ABL mutation status really matter? Blood 114: 5426–5435.

    Article  CAS  PubMed  Google Scholar 

  • Burgess MR, Skaggs BJ, Shah NP, Lee FY, Sawyers CL . (2005). Comparative analysis of two clinically active BCR-ABL kinase inhibitors reveals the role of conformation-specific binding in resistance. Proc Natl Acad Sci USA 102: 3395–3400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chusid MJ, Dale DC, West BC, Wolff SM . (1975). The hypereosinophilic syndrome: analysis of fourteen cases with review of the literature. Medicine (Baltimore) 54: 1–27.

    Article  CAS  Google Scholar 

  • Cools J, DeAngelo DJ, Gotlib J, Stover EH, Legare RD, Cortes J et al. (2003a). A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N Engl J Med 348: 1201–1214.

    Article  CAS  PubMed  Google Scholar 

  • Cools J, Stover EH, Boulton CL, Gotlib J, Legare RD, Amaral SM et al. (2003b). PKC412 overcomes resistance to imatinib in a murine model of FIP1L1-PDGFRalpha-induced myeloproliferative disease. Cancer Cell 3: 459–469.

    Article  CAS  PubMed  Google Scholar 

  • Corless CL, Heinrich MC . (2008). Molecular pathobiology of gastrointestinal stromal sarcomas. Annu Rev Pathol 3: 557–586.

    Article  CAS  PubMed  Google Scholar 

  • Corless CL, Schroeder A, Griffith D, Town A, McGreevey L, Harrell P et al. (2005). PDGFRA mutations in gastrointestinal stromal tumors: frequency, spectrum and in vitro sensitivity to imatinib. J Clin Oncol 23: 5357–5364.

    Article  CAS  PubMed  Google Scholar 

  • Cortes J, Jabbour E, Kantarjian H, Yin CC, Shan J, O'Brien S et al. (2007). Dynamics of BCR-ABL kinase domain mutations in chronic myeloid leukemia after sequential treatment with multiple tyrosine kinase inhibitors. Blood 110: 4005–4011.

    Article  CAS  PubMed  Google Scholar 

  • Cross NC, Reiter A . (2008). Fibroblast growth factor receptor and platelet-derived growth factor receptor abnormalities in eosinophilic myeloproliferative disorders. Acta Haematol 119: 199–206.

    Article  CAS  PubMed  Google Scholar 

  • Debiec-Rychter M, Cools J, Dumez H, Sciot R, Stul M, Mentens N et al. (2005). Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology 128: 270–279.

    Article  CAS  PubMed  Google Scholar 

  • Dewaele B, Wasag B, Cools J, Sciot R, Prenen H, Vandenberghe P et al. (2008). Activity of dasatinib, a dual SRC/ABL kinase inhibitor, and IPI-504, a heat shock protein 90 inhibitor, against gastrointestinal stromal tumor-associated PDGFRAD842V mutation. Clin Cancer Res 14: 5749–5758.

    Article  CAS  PubMed  Google Scholar 

  • Gleich GJ, Leiferman KM, Pardanani A, Tefferi A, Butterfield JH . (2002). Treatment of hypereosinophilic syndrome with imatinib mesilate. Lancet 359: 1577–1578.

    Article  CAS  PubMed  Google Scholar 

  • Gorre ME, Mohammed M, Ellwood K, Hsu N, Paquette R, Rao PN et al. (2001). Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science 293: 876–880.

    Article  CAS  PubMed  Google Scholar 

  • Gotlib J, Cools J . (2008). Five years since the discovery of FIP1L1-PDGFRA: what we have learned about the fusion and other molecularly defined eosinophilias. Leukemia 22: 1999–2010.

    Article  CAS  PubMed  Google Scholar 

  • Guida T, Anaganti S, Provitera L, Gedrich R, Sullivan E, Wilhelm SM et al. (2007). Sorafenib inhibits imatinib-resistant KIT and platelet-derived growth factor receptor beta gatekeeper mutants. Clin Cancer Res 13: 3363–3369.

    Article  CAS  PubMed  Google Scholar 

  • Guo T, Agaram NP, Wong GC, Hom G, D'Adamo D, Maki RG et al. (2007). Sorafenib inhibits the imatinib-resistant KITT670I gatekeeper mutation in gastrointestinal stromal tumor. Clin Cancer Res 13: 4874–4881.

    Article  CAS  PubMed  Google Scholar 

  • Heidel F, Solem FK, Breitenbuecher F, Lipka DB, Kasper S, Thiede MH et al. (2006). Clinical resistance to the kinase inhibitor PKC412 in acute myeloid leukemia by mutation of Asn-676 in the FLT3 tyrosine kinase domain. Blood 107: 293–300.

    Article  CAS  PubMed  Google Scholar 

  • Heinrich MC, Corless CL, Blanke CD, Demetri GD, Joensuu H, Roberts PJ et al. (2006). Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. J Clin Oncol 24: 4764–4774.

    Article  CAS  PubMed  Google Scholar 

  • Hirota S, Ohashi A, Nishida T, Isozaki K, Kinoshita K, Shinomura Y et al. (2003). Gain-of-function mutations of platelet-derived growth factor receptor alpha gene in gastrointestinal stromal tumors. Gastroenterology 125: 660–667.

    Article  CAS  PubMed  Google Scholar 

  • Hughes T, Saglio G, Branford S, Soverini S, Kim DW, Muller MC et al. (2009). Impact of baseline BCR-ABL mutations on response to nilotinib in patients with chronic myeloid leukemia in chronic phase. J Clin Oncol 27: 4204–4210.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kantarjian H, Giles F, Wunderle L, Bhalla K, O'Brien S, Wassmann B et al. (2006). Nilotinib in imatinib-resistant CML and Philadelphia chromosome-positive ALL. N Engl J Med 354: 2542–2551.

    Article  PubMed  Google Scholar 

  • Kindler T, Breitenbuecher F, Kasper S, Estey E, Giles F, Feldman E et al. (2005). Identification of a novel activating mutation (Y842C) within the activation loop of FLT3 in patients with acute myeloid leukemia (AML). Blood 105: 335–340.

    Article  CAS  PubMed  Google Scholar 

  • Lahaye T, Riehm B, Berger U, Paschka P, Muller MC, Kreil S et al. (2005). Response and resistance in 300 patients with BCR-ABL-positive leukemias treated with imatinib in a single center: a 4.5-year follow-up. Cancer 103: 1659–1669.

    Article  PubMed  Google Scholar 

  • Lierman E, Folens C, Stover EH, Mentens N, Van Miegroet H, Scheers W et al. (2006). Sorafenib is a potent inhibitor of FIP1L1-PDGFRalpha and the imatinib-resistant FIP1L1-PDGFRalpha T674I mutant. Blood 108: 1374–1376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lierman E, Michaux L, Beullens E, Pierre P, Marynen P, Cools J et al. (2009). FIP1L1-PDGFRalpha D842V, a novel panresistant mutant, emerging after treatment of FIP1L1-PDGFRalpha T674I eosinophilic leukemia with single agent sorafenib. Leukemia 23: 845–851.

    Article  CAS  PubMed  Google Scholar 

  • Ma Y, Zeng S, Metcalfe DD, Akin C, Dimitrijevic S, Butterfield JH et al. (2002). The c-KIT mutation causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory-type mutations. Blood 99: 1741–1744.

    Article  CAS  PubMed  Google Scholar 

  • Nagata H, Worobec AS, Oh CK, Chowdhury BA, Tannenbaum S, Suzuki Y et al. (1995). Identification of a point mutation in the catalytic domain of the protooncogene c-kit in peripheral blood mononuclear cells of patients who have mastocytosis with an associated hematologic disorder. Proc Natl Acad Sci USA 92: 10560–10564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolini FE, Chabane K, Tigaud I, Michallet M, Magaud JP, Hayette S . (2007). BCR-ABL mutant kinetics in CML patients treated with dasatinib. Leuk Res 31: 865–868.

    Article  CAS  PubMed  Google Scholar 

  • O'Hare T, Eide CA, Deininger MW . (2007). Bcr-Abl kinase domain mutations, drug resistance, and the road to a cure for chronic myeloid leukemia. Blood 110: 2242–2249.

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi H, Kandabashi K, Maeda Y, Kawamura M, Watanabe T . (2006). Chronic eosinophilic leukaemia with FIP1L1-PDGFRA fusion and T6741 mutation that evolved from langerhans cell histiocytosis with eosinophilia after chemotherapy. Br J Haematol 134: 547–549.

    Article  CAS  PubMed  Google Scholar 

  • Peng B, Hayes M, Resta D, Racine-Poon A, Druker BJ, Talpaz M et al. (2004). Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 22: 935–942.

    Article  CAS  PubMed  Google Scholar 

  • Redaelli S, Piazza R, Rostagno R, Magistroni V, Perini P, Marega M et al. (2009). Activity of bosutinib, dasatinib, and nilotinib against 18 imatinib-resistant BCR/ABL mutants. J Clin Oncol 27: 469–471.

    Article  CAS  PubMed  Google Scholar 

  • Score J, Walz C, Jovanovic JV, Jones AV, Waghorn K, Hidalgo-Curtis C et al. (2009). Detection and molecular monitoring of FIP1L1-PDGFRA-positive disease by analysis of patient-specific genomic DNA fusion junctions. Leukemia 23: 332–339.

    Article  CAS  PubMed  Google Scholar 

  • Simon D, Salemi S, Yousefi S, Simon HU . (2008). Primary resistance to imatinib in Fip1-like 1-platelet-derived growth factor receptor alpha-positive eosinophilic leukemia. J Allergy Clin Immunol 121: 1054–1056.

    Article  CAS  PubMed  Google Scholar 

  • Stover EH, Chen J, Lee BH, Cools J, McDowell E, Adelsperger J et al. (2005). The small molecule tyrosine kinase inhibitor AMN107 inhibits TEL-PDGFRbeta and FIP1L1-PDGFRalpha in vitro and in vivo. Blood 106: 3206–3213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strumberg D, Richly H, Hilger RA, Schleucher N, Korfee S, Tewes M et al. (2005). Phase I clinical and pharmacokinetic study of the novel Raf kinase and vascular endothelial growth factor receptor inhibitor BAY 43-9006 in patients with advanced refractory solid tumors. J Clin Oncol 23: 965–972.

    Article  CAS  PubMed  Google Scholar 

  • Tefferi A, Vardiman JW . (2008). Classification and diagnosis of myeloproliferative neoplasms: the 2008 World Health Organization criteria and point-of-care diagnostic algorithms. Leukemia 22: 14–22.

    Article  CAS  PubMed  Google Scholar 

  • von Bubnoff N, Engh RA, Aberg E, Sanger J, Peschel C, Duyster J . (2009). FMS-like tyrosine kinase 3-internal tandem duplication tyrosine kinase inhibitors display a nonoverlapping profile of resistance mutations in vitro. Cancer Res 69: 3032–3041.

    Article  CAS  PubMed  Google Scholar 

  • von Bubnoff N, Gorantla SP, Thone S, Peschel C, Duyster J . (2006a). The FIP1L1-PDGFRA T674I mutation can be inhibited by the tyrosine kinase inhibitor AMN107 (nilotinib). Blood 107: 4970–4971; author reply 4972.

    Article  CAS  PubMed  Google Scholar 

  • von Bubnoff N, Manley PW, Mestan J, Sanger J, Peschel C, Duyster J . (2006b). Bcr-Abl resistance screening predicts a limited spectrum of point mutations to be associated with clinical resistance to the Abl kinase inhibitor nilotinib (AMN107). Blood 108: 1328–1333.

    Article  CAS  PubMed  Google Scholar 

  • von Bubnoff N, Sandherr M, Schlimok G, Andreesen R, Peschel C, Duyster J . (2005a). Myeloid blast crisis evolving during imatinib treatment of an FIP1L1-PDGFR alpha-positive chronic myeloproliferative disease with prominent eosinophilia. Leukemia 19: 286–287.

    Article  CAS  PubMed  Google Scholar 

  • von Bubnoff N, Veach DR, van der Kuip H, Aulitzky WE, Sanger J, Seipel P et al. (2005b). A cell-based screen for resistance of Bcr-Abl-positive leukemia identifies the mutation pattern for PD166326, an alternative Abl kinase inhibitor. Blood 105: 1652–1659.

    Article  CAS  PubMed  Google Scholar 

  • Weisberg E, Manley PW, Breitenstein W, Bruggen J, Cowan-Jacob SW, Ray A et al. (2005). Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl. Cancer Cell 7: 129–141.

    Article  CAS  PubMed  Google Scholar 

  • Weisberg E, Wright RD, Jiang J, Ray A, Moreno D, Manley PW et al. (2006). Effects of PKC412, nilotinib, and imatinib against GIST-associated PDGFRA mutants with differential imatinib sensitivity. Gastroenterology 131: 1734–1742.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant to JD and NvB from the Bundesministerium für Bildung und Forschung (NGFNplus), and from the Wilhelm-Sander Stiftung, by a grant to JD from the Deutsche Forschungsgemeinschaft (SFB 684/A11), and by a grant to NvB by the Kommission für Klinische Forschung (KKF), Technische Universität München.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N von Bubnoff.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Bubnoff, N., Gorantla, S., Engh, R. et al. The low frequency of clinical resistance to PDGFR inhibitors in myeloid neoplasms with abnormalities of PDGFRA might be related to the limited repertoire of possible PDGFRA kinase domain mutations in vitro. Oncogene 30, 933–943 (2011). https://doi.org/10.1038/onc.2010.476

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.476

Keywords

This article is cited by

Search

Quick links