Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The reduced and altered activities of PAX5 are linked to the protein–protein interaction motif (coiled-coil domain) of the PAX5–PML fusion protein in t(9;15)-associated acute lymphocytic leukemia

Abstract

The paired box domain of PAX5 was reported to fuse with the sequence of promyelocytic leukemia (PML) to produce PAX5–PML chimeric protein in two patients with B-cell acute lymphoblastic leukemia. In the present studies, we found, by gel shift assays, that PAX5–PML bound to a panel of PAX5-consensus sequence acts as a homodimer with reduction of its DNA-binding affinities in comparison with wild-type PAX5. In transient transfection assays using 293T and HeLa cells, and retrovirus transduction of murine hematopoietic stem/progenitor cells together with quantitative real-time polymerase chain reaction analysis, PAX5–PML inhibited wild-type PAX5 target gene transcriptional activity. Studies comparing PAX5–PML with PAX5–PML(ΔCC) demonstrated that the coiled-coil (CC) protein interaction domain located within the PML moiety was required for PAX5–PML homodimer complex formation and partial transcriptional repression of genes controlled by PAX5. Fluorescent microscopic examination of transiently expressed YFP-tagged proteins in HeLa and 293T cells demonstrated that YFP–PAX5–PML and YFP–PAX5–PML(ΔCC) exhibited a diffuse granular pattern within the nucleus, similar to PAX5 but not PML. By fluorescent recovery after photobleach (FRAP), we have shown that PAX5–PML fusion protein has reduced intranuclear mobility compared with wild-type PAX5. Furthermore, the dimerization domain (CC) of PML was responsible for the reduced intranuclear mobility of PAX5–PML. These results indicate that the CC domain of PAX5–PML is important for each of the known activities of PAX5–PML fusion proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Adams B, Dorfler P, Aguzzi A, Kozmik Z, Urbanek P, Maurer-Fogy I et al. (1992). Pax-5 encodes the transcription factor BSAP and is expressed in B lymphocytes, the developing CNS, and adult testis. Genes Dev 6: 1589–1607.

    Article  CAS  PubMed  Google Scholar 

  • Barr FG . (2001). Gene fusions involving PAX and FOX family members in alveolar rhabdomyosarcoma. Oncogene 20: 5736–5746.

    Article  CAS  PubMed  Google Scholar 

  • Cobaleda C, Schebesta A, Delogu A, Busslinger M . (2007). Pax5: the guardian of B cell identity and function. Nat Immunol 8: 463–470.

    Article  CAS  PubMed  Google Scholar 

  • Czerny T, Schaffner G, Busslinger M . (1993). DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. Genes Dev 7: 2048–2061.

    Article  CAS  PubMed  Google Scholar 

  • de The H, Lavau C, Marchio A, Chomienne C, Degos L, Dejean A . (1991). The PML-RAR alpha fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RAR. Cell 66: 675–684.

    Article  CAS  PubMed  Google Scholar 

  • Delogu A, Schebesta A, Sun Q, Aschenbrenner K, Perlot T, Busslinger M . (2006). Gene repression by Pax5 in B cells is essential for blood cell homeostasis and is reversed in plasma cells. Immunity 24: 269–281.

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Qiu J, Stenoien DL, Brinkley WR, Mancini MA, Tweardy DJ . (2003). Essential role for the dimerization domain of NuMA-RARalpha in its oncogenic activities and localization to NuMA sites within the nucleus. Oncogene 22: 858–868.

    Article  CAS  PubMed  Google Scholar 

  • Dong S, Stenoien DL, Qiu J, Mancini MA, Tweardy DJ . (2004). Reduced intranuclear mobility of APL fusion proteins accompanies their mislocalization and results in sequestration and decreased mobility of retinoid X receptor alpha. Mol Cell Biol 24: 4465–4475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grignani F, Gelmetti V, Fanelli M, Rogaia D, De Matteis S, Ferrara FF et al. (1999). Formation of PML /RAR alpha high molecular weight nuclear complexes through the PML coiled-coil region is essential for the PML /RAR alpha-mediated retinoic acid response. Oncogene 18: 6313–6321.

    Article  CAS  PubMed  Google Scholar 

  • Huang Y, Qiu J, Chen G, Dong S . (2008). Coiled-coil domain of PML is essential for the aberrant dynamics of PML-RARalpha, resulting in sequestration and decreased mobility of SMRT. Biochem Biophys Res Commun 365: 258–265.

    Article  CAS  PubMed  Google Scholar 

  • Kawamata N, Ogawa S, Zimmermann M, Niebuhr B, Stocking C, Sanada M et al. (2008). Cloning of genes involved in chromosomal translocations by high-resolution single nucleotide polymorphism genomic microarray. Proc Natl Acad Sci USA 105: 11921–11926.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koken MH, Puvion-Dutilleul F, Guillemin MC, Viron A, Linares-Cruz G, Stuurman N et al. (1994). The t(15;17) translocation alters a nuclear body in a retinoic acid-reversible fashion. EMBO J 13: 1073–1083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwok C, Zeisig BB, Qiu J, Dong S, So CW . (2009). Transforming activity of AML1-ETO is independent of CBFbeta and ETO interaction but requires formation of homo-oligomeric complexes. Proc Natl Acad Sci USA 106: 2853–2858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauring J, Schlissel MS . (1999). Distinct factors regulate the murine RAG-2 promoter in B- and T-cell lines. Mol Cell Biol 19: 2601–2612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Look AT . (1997). Oncogenic transcription factors in the human acute leukemias. Science 278: 1059–1064.

    Article  CAS  PubMed  Google Scholar 

  • Melnick A, Licht JD . (1999). Deconstructing a disease: RARalpha, its fusion partners, and their roles in the pathogenesis of acute promyelocytic leukemia. Blood 93: 3167–3215.

    CAS  PubMed  Google Scholar 

  • Mikkola I, Heavey B, Horcher M, Busslinger M . (2002). Reversion of B cell commitment upon loss of Pax5 expression. Science 297: 110–113.

    Article  CAS  PubMed  Google Scholar 

  • Mullighan CG, Goorha S, Radtke I, Miller CB, Coustan-Smith E, Dalton JD et al. (2007). Genome-wide analysis of genetic alterations in acute lymphoblastic leukaemia. Nature 446: 758–764.

    Article  CAS  PubMed  Google Scholar 

  • Nebral K, Denk D, Attarbaschi A, Konig M, Mann G, Haas OA et al. (2009). Incidence and diversity of PAX5 fusion genes in childhood acute lymphoblastic leukemia. Leukemia 23: 134–143.

    Article  CAS  PubMed  Google Scholar 

  • Nebral K, Konig M, Harder L, Siebert R, Haas OA, Strehl S . (2007). Identification of PML as novel PAX5 fusion partner in childhood acute lymphoblastic leukaemia. Br J Haematol 139: 269–274.

    Article  CAS  PubMed  Google Scholar 

  • Nutt SL, Heavey B, Rolink AG, Busslinger M . (1999). Commitment to the B-lymphoid lineage depends on the transcription factor Pax5. Nature 401: 556–562.

    Article  CAS  PubMed  Google Scholar 

  • Pridans C, Holmes ML, Polli M, Wettenhall JM, Dakic A, Corcoran LM et al. (2008). Identification of Pax5 target genes in early B cell differentiation. J Immunol 180: 1719–1728.

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Gunaratne P, Peterson LE, Khurana D, Walsham N, Loulseged H et al. (2003). Novel potential ALL low-risk markers revealed by gene expression profiling with new high-throughput SSH-CCS-PCR. Leukemia 17: 1891–1900.

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Huang Y, Chen G, Chen Z, Tweardy DJ, Dong S . (2007). Aberrant chromatin remodeling by retinoic acid receptor alpha fusion proteins assessed at the single-cell level. Mol Biol Cell 18: 3941–3951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu J, Shi G, Jia Y, Li J, Wu M, Dong S et al. (2010a). The X-linked mental retardation gene PHF8 is a histone demethylase involved in neuronal differentiation. Cell Res 20: 908–918.

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Wong J, Tweardy DJ, Dong S . (2006). Decreased intranuclear mobility of acute myeloid leukemia 1-containing fusion proteins is accompanied by reduced mobility and compartmentalization of core binding factor beta. Oncogene 25: 3982–3993.

    Article  CAS  PubMed  Google Scholar 

  • Qiu JJ, Lu X, Zeisig BB, Ma Z, Cai X, Chen S et al. (2010b). Leukemic transformation by the APL fusion protein PRKAR1A-RARalpha critically depends on recruitment of RXRalpha. Blood 115: 643–652.

    Article  CAS  PubMed  Google Scholar 

  • Robson EJ, He SJ, Eccles MR . (2006). A PANorama of PAX genes in cancer and development. Nat Rev Cancer 6: 52–62.

    Article  CAS  PubMed  Google Scholar 

  • Schebesta A, McManus S, Salvagiotto G, Delogu A, Busslinger GA, Busslinger M . (2007). Transcription factor Pax5 activates the chromatin of key genes involved in B cell signaling, adhesion, migration, and immune function. Immunity 27: 49–63.

    Article  CAS  PubMed  Google Scholar 

  • Schebesta M, Pfeffer PL, Busslinger M . (2002). Control of pre-BCR signaling by Pax5-dependent activation of the BLNK gene. Immunity 17: 473–485.

    Article  CAS  PubMed  Google Scholar 

  • So CW, Cleary ML . (2004). Dimerization: a versatile switch for oncogenesis. Blood 104: 919–922.

    Article  CAS  PubMed  Google Scholar 

  • So CW, Karsunky H, Passegue E, Cozzio A, Weissman IL, Cleary ML . (2003a). MLL-GAS7 transforms multipotent hematopoietic progenitors and induces mixed lineage leukemias in mice. Cancer Cell 3: 161–171.

    Article  CAS  PubMed  Google Scholar 

  • So CW, Lin M, Ayton PM, Chen EH, Cleary ML . (2003b). Dimerization contributes to oncogenic activation of MLL chimeras in acute leukemias. Cancer Cell 4: 99–110.

    Article  CAS  PubMed  Google Scholar 

  • Urbanek P, Wang ZQ, Fetka I, Wagner EF, Busslinger M . (1994). Complete block of early B cell differentiation and altered patterning of the posterior midbrain in mice lacking Pax5 /BSAP. Cell 79: 901–912.

    Article  CAS  PubMed  Google Scholar 

  • Zeisig BB, Kwok C, Zelent A, Shankaranarayanan P, Gronemeyer H, Dong S et al. (2007). Recruitment of RXR by Homotetrameric RARalpha fusion proteins is essential for transformation. Cancer Cell 12: 36–51.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr M Busslinger (Research Institute of Molecular Pathology, Vienna, Austria) for the CD19-luciferase and PAX5 expression vectors, Dr AS Belmont (University of Illinois Champagne-Urbana) for the A03_1 cell line, and Dr CWE So (King's College London, London, UK) for critical reading of the manuscript. This work was supported in part, by funds from the Albert and Margaret alkek Foundation and Leukemia Research Foundation (LRF).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to J J Qiu or S Dong.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, J., Chu, H., Lu, X. et al. The reduced and altered activities of PAX5 are linked to the protein–protein interaction motif (coiled-coil domain) of the PAX5–PML fusion protein in t(9;15)-associated acute lymphocytic leukemia. Oncogene 30, 967–977 (2011). https://doi.org/10.1038/onc.2010.473

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.473

Keywords

This article is cited by

Search

Quick links