Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Caspase-3 cleaves XIAP in a positive feedback loop to sensitize melanoma cells to TRAIL-induced apoptosis

Abstract

Successful treatment of melanoma is still challenging, because metastasis remain chemoresistant and radioresistant. Accordingly, combinational treatments involving death ligands are mandatory. In a recent study from our lab, the majority out of 18 melanoma cell lines remained resistant against treatment with the death ligand TRAIL (tumor necrosis factor related apoptosis inducing ligand). Resistance was shown to be mainly due to incomplete processing of caspase-3 into catalytically inactive p21 by binding of the anti-apoptotic protein X-linked inhibitor of apoptosis protein (XIAP). Co-irradiation with sub-lethal ultraviolet (UV) B caused depletion of XIAP resulting in synergistic sensitization of all but two melanoma cell lines to TRAIL. We show here the XIAP depletion to essentially require initial caspase-mediated cleavage, which promotes proteasomal degradation of XIAP. Utilizing specific caspase inhibitors and small interfering RNA-mediated knockdown, we further identified caspase-3 to be responsible for performing the initial cleavage of XIAP after UVB treatment. Additional evidence suggests an accelerated mitochondrial outer membrane permeabilization in response to co-treatment with TRAIL and UVB, which directs the release of XIAP antagonizing factors including Smac. Distraction of XIAP consequently liberates caspase-3 to autocatalytically process into active p17. Activated caspase-3 cleaves XIAP and further enhances its activation in a positive regulatory feedback loop. The molecular mechanism discovered here appears to have broader implications, because cleavage of XIAP was also shown to accompany cisplatin-induced sensitization of melanoma cells to TRAIL.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Blankenship JW, Varfolomeev E, Goncharov T, Fedorova AV, Kirkpatrick DS, Izrael-Tomasevic A et al. (2009). Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP2(1). Biochem J 417: 149–160.

    Article  CAS  Google Scholar 

  • Chen L, Smith L, Wang Z, Smith JB . (2003). Preservation of caspase-3 subunits from degradation contributes to apoptosis evoked by lactacystin: any single lysine or lysine pair of the small subunit is sufficient for ubiquitination. Mol Pharmacol 64: 334–345.

    Article  CAS  Google Scholar 

  • Cheung H, Plenchette S, Kern CJ, Mahoney DJ, Korneluk RG . (2008). The RING domain of cIAP1 mediates the degradation of RING-bearing inhibitor of apoptosis proteins by distinct pathways. Mol Biol Cell 19: 2729–2740.

    Article  CAS  Google Scholar 

  • Creagh EM, Murphy BM, Duriez PJ, Duckett CS, Martin SJ . (2004). Smac/Diablo antagonizes ubiquitin ligase activity of inhibitor of apoptosis proteins. J Biol Chem 279: 26906–26914.

    Article  CAS  Google Scholar 

  • Dan HC, Sun M, Kaneko S, Feldman RI, Nicosia SV, Wang HG et al. (2004). Akt phosphorylation and stabilization of X-linked inhibitor of apoptosis protein (XIAP). J Biol Chem 279: 5405–5412.

    Article  CAS  Google Scholar 

  • Denault JB, Eckelman BP, Shin H, Pop C, Salvesen GS . (2007). Caspase 3 attenuates XIAP (X-linked inhibitor of apoptosis protein)-mediated inhibition of caspase 9. Biochem J 405: 11–19.

    Article  CAS  Google Scholar 

  • Desplanques G, Giuliani N, Delsignore R, Rizzoli V, Bataille R, Barille-Nion S . (2009). Impact of XIAP protein levels on the survival of myeloma cells. Haematologica 94: 87–93.

    Article  CAS  Google Scholar 

  • Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC . (1999). Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J 18: 5242–5251.

    Article  CAS  Google Scholar 

  • Dohi T, Okada K, Xia F, Wilford CE, Samuel T, Welsh K et al. (2004). An IAP-IAP complex inhibits apoptosis. J Biol Chem 279: 34087–34090.

    Article  CAS  Google Scholar 

  • Du C, Fang M, Li Y, Li L, Wang X . (2000). Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102: 33–42.

    Article  CAS  Google Scholar 

  • Edmondson SR, Russo VC, McFarlane AC, Wraight CJ, Werther GA . (1999). Interactions between growth hormone, insulin-like growth factor I, and basic fibroblast growth factor in melanocyte growth. J Clin Endocrinol Metab 84: 1638–1644.

    CAS  PubMed  Google Scholar 

  • Flaherty KT . (2006). Chemotherapy and targeted therapy combinations in advanced melanoma. Clin Cancer Res 12: 2366s–2370s.

    Article  CAS  Google Scholar 

  • Fu J, Jin Y, Arend LJ . (2003). Smac3, a novel Smac/DIABLO splicing variant, attenuates the stability and apoptosis-inhibiting activity of X-linked inhibitor of apoptosis protein. J Biol Chem 278: 52660–52672.

    Article  CAS  Google Scholar 

  • Galban S, Duckett CS . (2009). XIAP as a ubiquitin ligase in cellular signaling. Cell Death Differ 17: 54–60.

    Article  Google Scholar 

  • Ganten TM, Koschny R, Sykora J, Schulze-Bergkamen H, Buchler P, Haas TL et al. (2006). Preclinical differentiation between apparently safe and potentially hepatotoxic applications of TRAIL either alone or in combination with chemotherapeutic drugs. Clin Cancer Res 12: 2640–2646.

    Article  CAS  Google Scholar 

  • Gyrd-Hansen M, Darding M, Miasari M, Santoro MM, Zender L, Xue W et al. (2008). IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis. Nat Cell Biol 10: 1309–1317.

    Article  CAS  Google Scholar 

  • Hougardy BM, Maduro JH, van der Zee AG, de Groot DJ, van den Heuvel FA, de Vries EG et al. (2006). Proteasome inhibitor MG132 sensitizes HPV-positive human cervical cancer cells to rhTRAIL-induced apoptosis. Int J Cancer 118: 1892–1900.

    Article  CAS  Google Scholar 

  • Hunter AM, Kottachchi D, Lewis J, Duckett CS, Korneluk RG, Liston P . (2003). A novel ubiquitin fusion system bypasses the mitochondria and generates biologically active Smac/DIABLO. J Biol Chem 278: 7494–7499.

    Article  CAS  Google Scholar 

  • Hunter AM, LaCasse EC, Korneluk RG . (2007). The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis 12: 1543–1568.

    Article  CAS  Google Scholar 

  • Hussain AR, Ahmed M, Ahmed SO, Al Thari S, Khan AS, Razack S et al. (2009). Proteasome inhibitor MG-132 mediated expression of p27Kip1 via S-phase kinase protein 2 degradation induces cell cycle coupled apoptosis in primary effusion lymphoma cells. Leuk Lymphoma 50: 1204–1213.

    Article  CAS  Google Scholar 

  • Inoue T, Shiraki K, Fuke H, Yamanaka Y, Miyashita K, Yamaguchi Y et al. (2006). Proteasome inhibition sensitizes hepatocellular carcinoma cells to TRAIL by suppressing caspase inhibitors and AKT pathway. Anticancer Drugs 17: 261–268.

    Article  CAS  Google Scholar 

  • Kashkar H, Deggerich A, Seeger JM, Yazdanpanah B, Wiegmann K, Haubert D et al. (2007). NF-kappaB-independent down-regulation of XIAP by bortezomib sensitizes HL B cells against cytotoxic drugs. Blood 109: 3982–3988.

    Article  CAS  Google Scholar 

  • Kashkar H, Seeger JM, Hombach A, Deggerich A, Yazdanpanah B, Utermohlen O et al. (2006). XIAP targeting sensitizes Hodgkin lymphoma cells for cytolytic T-cell attack. Blood 108: 3434–3440.

    Article  CAS  Google Scholar 

  • Kashkar H, Wiegmann K, Yazdanpanah B, Haubert D, Kronke M . (2005). Acid sphingomyelinase is indispensable for UV light-induced Bax conformational change at the mitochondrial membrane. J Biol Chem 280: 20804–20813.

    Article  CAS  Google Scholar 

  • Koschny R, Walczak H, Ganten TM . (2007). The promise of TRAIL—potential and risks of a novel anticancer therapy. J Mol Med 85: 923–935.

    Article  CAS  Google Scholar 

  • Lasithiotakis KG, Leiter U, Gorkievicz R, Eigentler T, Breuninger H, Metzler G . (2006). The incidence and mortality of cutaneous melanoma in Southern Germany: trends by anatomic site and pathologic characteristics, 1976 to 2003. Cancer 107: 1331–1339.

    Article  Google Scholar 

  • Leverkus M, Sprick MR, Wachter T, Mengling T, Baumann B, Serfling E et al. (2003). Proteasome inhibition results in TRAIL sensitization of primary keratinocytes by removing the resistance-mediating block of effector caspase maturation. Mol Cell Biol 23: 777–790.

    Article  CAS  Google Scholar 

  • Liou JY, Matijevic-Aleksic N, Lee S, Wu KK . (2007). Prostacyclin inhibits endothelial cell XIAP ubiquitination and degradation. J Cell Physiol 212: 840–848.

    Article  CAS  Google Scholar 

  • Liu L, Yang C, Herzog C, Seth R, Kaushal GP . (2010). Proteasome inhibitors prevent cisplatin-induced mitochondrial release of apoptosis-inducing factor and markedly ameliorate cisplatin nephrotoxicity. Biochem Pharmacol 79: 137–146.

    Article  CAS  Google Scholar 

  • Liu WH, Hsiao HW, Tsou WI, Lai MZ . (2007). Notch inhibits apoptosis by direct interference with XIAP ubiquitination and degradation. EMBO J 26: 1660–1669.

    Article  CAS  Google Scholar 

  • Maas C, Verbrugge I, de Vries E, Savich G, van de Kooij LW, Tait SW et al. (2010). Smac/DIABLO release from mitochondria and XIAP inhibition are essential to limit clonogenicity of Type I tumor cells after TRAIL receptor stimulation. Cell Death Differ (doi: 10.1038/cdd.2010.39).

    Article  CAS  Google Scholar 

  • MacFarlane M, Merrison W, Bratton SB, Cohen GM . (2002). Proteasome-mediated degradation of Smac during apoptosis: XIAP promotes Smac ubiquitination in vitro. J Biol Chem 277: 36611–36616.

    Article  CAS  Google Scholar 

  • McStay GP, Salvesen GS, Green DR . (2008). Overlapping cleavage motif selectivity of caspases: implications for analysis of apoptotic pathways. Cell Death Differ 15: 322–331.

    Article  CAS  Google Scholar 

  • Morizane Y, Honda R, Fukami K, Yasuda H . (2005). X-linked inhibitor of apoptosis functions as ubiquitin ligase toward mature caspase-9 and cytosolic Smac/DIABLO. J Biochem 137: 125–132.

    Article  CAS  Google Scholar 

  • Ndozangue-Touriguine O, Sebbagh M, Merino D, Micheau O, Bertoglio J, Breard J . (2008). A mitochondrial block and expression of XIAP lead to resistance to TRAIL-induced apoptosis during progression to metastasis of a colon carcinoma. Oncogene 27: 6012–6022.

    Article  CAS  Google Scholar 

  • Rehm M, Huber HJ, Dussmann H, Prehn JH . (2006). Systems analysis of effector caspase activation and its control by X-linked inhibitor of apoptosis protein. EMBO J 25: 4338–4349.

    Article  CAS  Google Scholar 

  • Schimmer AD, Dalili S, Batey RA, Riedl SJ . (2006). Targeting XIAP for the treatment of malignancy. Cell Death Differ 13: 179–188.

    Article  CAS  Google Scholar 

  • Shi RX, Ong CN, Shen HM . (2005). Protein kinase C inhibition and x-linked inhibitor of apoptosis protein degradation contribute to the sensitization effect of luteolin on tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in cancer cells. Cancer Res 65: 7815–7823.

    Article  CAS  Google Scholar 

  • Silke J, Kratina T, Chu D, Ekert PG, Day CL, Pakusch M et al. (2005). Determination of cell survival by RING-mediated regulation of inhibitor of apoptosis (IAP) protein abundance. Proc Natl Acad Sci USA 102: 16182–16187.

    Article  CAS  Google Scholar 

  • Silke J, Kratina T, Ekert PG, Pakusch M, Vaux DL . (2004). Unlike Diablo/smac, Grim promotes global ubiquitination and specific degradation of X chromosome-linked inhibitor of apoptosis (XIAP) and neither cause apoptosis. J Biol Chem 279: 4313–4321.

    Article  CAS  Google Scholar 

  • Sohn D, Totzke G, Essmann F, Schulze-Osthoff K, Levkau B, Janicke RU . (2006). The proteasome is required for rapid initiation of death receptor-induced apoptosis. Mol Cell Biol 26: 1967–1978.

    Article  CAS  Google Scholar 

  • Srinivasula SM, Ashwell JD . (2008). IAPs: what's in a name? Mol Cell 30: 123–135.

    Article  CAS  Google Scholar 

  • Sun H, Stuckey JA, Nikolovska-Coleska Z, Qin D, Meagher JL, Qiu S et al. (2008). Structure-based design, synthesis, evaluation, and crystallographic studies of conformationally constrained Smac mimetics as inhibitors of the X-linked inhibitor of apoptosis protein (XIAP). J Med Chem 51: 7169–7180.

    Article  CAS  Google Scholar 

  • Suzuki Y, Nakabayashi Y, Takahashi R . (2001). Ubiquitin-protein ligase activity of X-linked inhibitor of apoptosis protein promotes proteasomal degradation of caspase-3 and enhances its anti-apoptotic effect in Fas-induced cell death. Proc Natl Acad Sci USA 98: 8662–8667.

    Article  CAS  Google Scholar 

  • Thayaparasingham B, Kunz A, Peters N, Kulms D . (2009). Sensitization of melanoma cells to TRAIL by UVB-induced and NF-kappaB-mediated downregulation of xIAP. Oncogene 28: 345–362.

    Article  CAS  Google Scholar 

  • Twiddy D, Cain K . (2007). Caspase-9 cleavage, do you need it? Biochem J 405: e1–e2.

    Article  CAS  Google Scholar 

  • Walczak H, Miller RE, Ariail K, Gliniak B, Griffith TS, Kubin M et al. (1999). Tumoricidal activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo. Nat Med 5: 157–163.

    Article  CAS  Google Scholar 

  • Yang QH, Du C . (2004). Smac/DIABLO selectively reduces the levels of c-IAP1 and c-IAP2 but not that of XIAP and livin in HeLa cells. J Biol Chem 279: 16963–16970.

    Article  CAS  Google Scholar 

  • Yang Y, Fang S, Jensen JP, Weissman AM, Ashwell JD . (2000). Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science 288: 874–877.

    Article  CAS  Google Scholar 

  • Zeise E, Weichenthal M, Schwarz T, Kulms D . (2004). Resistance of human melanoma cells against the death ligand TRAIL is reversed by ultraviolet-B radiation via downregulation of FLIP. J Invest Dermatol 123: 746–754.

    Article  CAS  Google Scholar 

  • Zhang XD, Wu JJ, Gillespie S, Borrow J, Hersey P . (2006). Human melanoma cells selected for resistance to apoptosis by prolonged exposure to tumor necrosis factor-related apoptosis-inducing ligand are more vulnerable to necrotic cell death induced by cisplatin. Clin Cancer Res 12: 1355–1364.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Deutsche Krebshilfe/108717 for funding this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D Kulms.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website ()

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hörnle, M., Peters, N., Thayaparasingham, B. et al. Caspase-3 cleaves XIAP in a positive feedback loop to sensitize melanoma cells to TRAIL-induced apoptosis. Oncogene 30, 575–587 (2011). https://doi.org/10.1038/onc.2010.434

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.434

Keywords

This article is cited by

Search

Quick links