Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Mitochondrial respiratory chain complexes: apoptosis sensors mutated in cancer?

Abstract

Mutations in cancer cells affecting subunits of the respiratory chain (RC) indicate a central role of oxidative phosphorylation for tumourigenesis. Recent studies have suggested that such mutations of RC complexes impact apoptosis induction. We review here the evidence for this hypothesis, which in particular emerged from work on how complex I and II mediate signals for apoptosis. Both protein aggregates are specifically inhibited for apoptosis induction through different means by exploiting with protease activation and pH change, two widespread but independent features of dying cells. Nevertheless, both converge on forming reactive oxygen species for the demise of the cell. Investigations into these mitochondrial processes will remain a rewarding area for unravelling the causes of tumourigenesis and for discovering interference options.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Abu-Amero KK, Alzahrani AS, Zou M, Shi Y . (2005). High frequency of somatic mitochondrial DNA mutations in human thyroid carcinomas and complex I respiratory defect in thyroid cancer cell lines. Oncogene 24: 1455–1460.

    Article  CAS  PubMed  Google Scholar 

  • Akhmedov D, Braun M, Mataki C, Park KS, Pozzan T, Schoonjans K et al. (2010). Mitochondrial matrix pH controls oxidative phosphorylation and metabolism-secretion coupling in INS-1E clonal beta cells. FASEB J 24: 4613–4626.

    Article  CAS  PubMed  Google Scholar 

  • Albayrak T, Scherhammer V, Schoenfeld N, Braziulis E, Mund T, Bauer MK et al. (2003). The tumor suppressor cybL, a component of the respiratory chain, mediates apoptosis induction. Mol Biol Cell 14: 3082–3096.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amar L, Baudin E, Burnichon N, Peyrard S, Silvera S, Bertherat J et al. (2007). Succinate dehydrogenase B gene mutations predict survival in patients with malignant pheochromocytomas or paragangliomas. J Clin Endocrinol Metab 92: 3822–3828.

    Article  CAS  PubMed  Google Scholar 

  • Amar L, Bertherat J, Baudin E, Ajzenberg C, Bressac-de Paillerets B, Chabre O et al. (2005). Genetic testing in pheochromocytoma or functional paraganglioma. J Clin Oncol 23: 8812–8818.

    Article  CAS  PubMed  Google Scholar 

  • Arrington DD, Van Vleet TR, Schnellmann RG . (2006). Calpain 10: a mitochondrial calpain and its role in calcium-induced mitochondrial dysfunction. Am J Physiol Cell Physiol 291: C1159–C1171.

    Article  CAS  PubMed  Google Scholar 

  • Astuti D, Latif F, Dallol A, Dahia PL, Douglas F, George E et al. (2001). Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am J Hum Genet 69: 49–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayley JP, Devilee P . (2010). Warburg tumours and the mechanisms of mitochondrial tumour suppressor genes. Barking up the right tree? Curr Opin Genet Dev 20: 324–329.

    Article  CAS  PubMed  Google Scholar 

  • Bayley JP, Devilee P, Taschner PE . (2005). The SDH mutation database: an online resource for succinate dehydrogenase sequence variants involved in pheochromocytoma, paraganglioma and mitochondrial complex II deficiency. BMC Med Genet 6: 39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bayley JP, Kunst HP, Cascon A, Sampietro ML, Gaal J, Korpershoek E et al. (2010). SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 11: 366–372.

    Article  CAS  PubMed  Google Scholar 

  • Baysal BE . (2008). Clinical and molecular progress in hereditary paraganglioma. J Med Genet 45: 689–694.

    Article  CAS  PubMed  Google Scholar 

  • Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D, Bosch A et al. (2000). Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287: 848–851.

    Article  CAS  PubMed  Google Scholar 

  • Belevich I, Verkhovsky MI . (2008). Molecular mechanism of proton translocation by cytochrome c oxidase. Antioxid Redox Signal 10: 1–29.

    Article  CAS  PubMed  Google Scholar 

  • Benit P, Lebon S, Rustin P . (2009). Respiratory-chain diseases related to complex III deficiency. Biochim Biophys Acta 1793: 181–185.

    Article  CAS  PubMed  Google Scholar 

  • Bensaad K, Tsuruta A, Selak MA, Vidal MN, Nakano K, Bartrons R et al. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126: 107–120.

    Article  CAS  PubMed  Google Scholar 

  • Blank A, Schmitt AM, Korpershoek E, van Nederveen F, Rudolph T, Weber N et al. (2010). SDHB loss predicts malignancy in pheochromocytomas/sympathethic paragangliomas, but not through hypoxia signalling. Endocr Relat Cancer 17: 919–928.

    Article  PubMed  Google Scholar 

  • Boedeker CC, Neumann HP, Maier W, Bausch B, Schipper J, Ridder GJ . (2007). Malignant head and neck paragangliomas in SDHB mutation carriers. Otolaryngol Head Neck Surg 137: 126–129.

    Article  PubMed  Google Scholar 

  • Bonnet S, Archer SL, Allalunis-Turner J, Haromy A, Beaulieu C, Thompson R et al. (2007). A mitochondria-K+ channel axis is suppressed in cancer and its normalization promotes apoptosis and inhibits cancer growth. Cancer Cell 11: 37–51.

    Article  CAS  PubMed  Google Scholar 

  • Bonora E, Porcelli AM, Gasparre G, Biondi A, Ghelli A, Carelli V et al. (2006). Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res 66: 6087–6096.

    Article  CAS  PubMed  Google Scholar 

  • Bourgeron T, Rustin P, Chretien D, Birch-Machin M, Bourgeois M, Viegas-Pequignot E et al. (1995). Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat Genet 11: 144–149.

    Article  CAS  PubMed  Google Scholar 

  • Brandon M, Baldi P, Wallace DC . (2006). Mitochondrial mutations in cancer. Oncogene 25: 4647–4662.

    Article  CAS  PubMed  Google Scholar 

  • Briere JJ, Favier J, Benit P, El Ghouzzi V, Lorenzato A, Rabier D et al. (2005). Mitochondrial succinate is instrumental for HIF1alpha nuclear translocation in SDHA-mutant fibroblasts under normoxic conditions. Hum Mol Genet 14: 3263–3269.

    Article  CAS  PubMed  Google Scholar 

  • Brockmann K, Bjornstad A, Dechent P, Korenke CG, Smeitink J, Trijbels JM et al. (2002). Succinate in dystrophic white matter: a proton magnetic resonance spectroscopy finding characteristic for complex II deficiency. Ann Neurol 52: 38–46.

    Article  CAS  PubMed  Google Scholar 

  • Brusque AM, Borba Rosa R, Schuck PF, Dalcin KB, Ribeiro CA, Silva CG et al. (2002). Inhibition of the mitochondrial respiratory chain complex activities in rat cerebral cortex by methylmalonic acid. Neurochem Int 40: 593–601.

    Article  CAS  PubMed  Google Scholar 

  • Burnichon N, Briere JJ, Libe R, Vescovo L, Riviere J, Tissier F et al. (2010). SDHA is a tumor suppressor gene causing paraganglioma. Hum Mol Genet 19: 3011–3020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnichon N, Rohmer V, Amar L, Herman P, Leboulleux S, Darrouzet V et al. (2009). The succinate dehydrogenase genetic testing in a large prospective series of patients with paragangliomas. J Clin Endocrinol Metab 94: 2817–2827.

    Article  CAS  PubMed  Google Scholar 

  • Byun HO, Kim HY, Lim JJ, Seo YH, Yoon G . (2008). Mitochondrial dysfunction by complex II inhibition delays overall cell cycle progression via reactive oxygen species production. J Cell Biochem 104: 1747–1759.

    Article  CAS  PubMed  Google Scholar 

  • Campanella M, Parker N, Tan CH, Hall AM, Duchen MR . (2009). IF(1): setting the pace of the F(1)F(o)-ATP synthase. Trends Biochem Sci 34: 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Cecchini G . (2003). Function and structure of complex II of the respiratory chain. Annu Rev Biochem 72: 77–109.

    Article  CAS  PubMed  Google Scholar 

  • Cervera AM, Apostolova N, Crespo FL, Mata M, McCreath KJ . (2008). Cells silenced for SDHB expression display characteristic features of the tumor phenotype. Cancer Res 68: 4058–4067.

    Article  CAS  PubMed  Google Scholar 

  • Chen CL, Chen J, Rawale S, Varadharaj S, Kaumaya PP, Zweier JL et al. (2008). Protein tyrosine nitration of the flavin subunit is associated with oxidative modification of mitochondrial complex II in the post-ischemic myocardium. J Biol Chem 283: 27991–28003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB . (2007a). Mitochondrial electron-transport-chain inhibitors of complexes I and II induce autophagic cell death mediated by reactive oxygen species. J Cell Sci 120: 4155–4166.

    Article  CAS  PubMed  Google Scholar 

  • Chen YR, Chen CL, Pfeiffer DR, Zweier JL . (2007b). Mitochondrial complex II in the post-ischemic heart: oxidative injury and the role of protein S-glutathionylation. J Biol Chem 282: 32640–32654.

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Li Y, Zhang H, Huang P, Luthra R . (2010). Hypoxia-regulated microRNA-210 modulates mitochondrial function and decreases ISCU and COX10 expression. Oncogene 29: 4362–4368.

    Article  CAS  PubMed  Google Scholar 

  • Choksi KB, Nuss JE, Boylston WH, Rabek JP, Papaconstantinou J . (2007). Age-related increases in oxidatively damaged proteins of mouse kidney mitochondrial electron transport chain complexes. Free Radic Biol Med 43: 1423–1438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choksi KB, Nuss JE, Deford JH, Papaconstantinou J . (2008). Age-related alterations in oxidatively damaged proteins of mouse skeletal muscle mitochondrial electron transport chain complexes. Free Radic Biol Med 45: 826–838.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cino M, Del Maestro RF . (1989). Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia. Arch Biochem Biophys 269: 623–638.

    Article  CAS  PubMed  Google Scholar 

  • Circu ML, Aw TY . (2010). Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48: 749–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clementi E, Brown GC, Feelisch M, Moncada S . (1998). Persistent inhibition of cell respiration by nitric oxide: crucial role of S-nitrosylation of mitochondrial complex I and protective action of glutathione. Proc Natl Acad Sci USA 95: 7631–7636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cullen SP, Martin SJ . (2008). Mechanisms of granule-dependent killing. Cell Death Differ 15: 251–262.

    Article  CAS  PubMed  Google Scholar 

  • Cuperus R, Leen R, Tytgat GA, Caron HN, van Kuilenburg AB . (2010). Fenretinide induces mitochondrial ROS and inhibits the mitochondrial respiratory chain in neuroblastoma. Cell Mol Life Sci 67: 807–816.

    Article  CAS  PubMed  Google Scholar 

  • Dahia PL, Ross KN, Wright ME, Hayashida CY, Santagata S, Barontini M et al. (2005). A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet 1: 72–80.

    Article  CAS  PubMed  Google Scholar 

  • Dayal D, Martin SM, Owens KM, Aykin-Burns N, Zhu Y, Boominathan A et al. (2009). Mitochondrial complex II dysfunction can contribute significantly to genomic instability after exposure to ionizing radiation. Radiat Res 172: 737–745.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denko NC . (2008). Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8: 705–713.

    Article  CAS  PubMed  Google Scholar 

  • Di Paola M, Cocco T, Lorusso M . (2000). Ceramide interaction with the respiratory chain of heart mitochondria. Biochemistry 39: 6660–6668.

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Ruiz R, Averet N, Araiza D, Pinson B, Uribe-Carvajal S, Devin A et al. (2008). Mitochondrial oxidative phosphorylation is regulated by fructose 1,6-bisphosphate. A possible role in Crabtree effect induction? J Biol Chem 283: 26948–26955.

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Ruiz R, Rigoulet M, Devin A . (2011). The Warburg and Crabtree effects: on the origin of cancer cell energy metabolism and of yeast glucose repression. Biochim Biophys Acta 1807: 568–576.

    Article  CAS  PubMed  Google Scholar 

  • Diaz F . (2010). Cytochrome c oxidase deficiency: patients and animal models. Biochim Biophys Acta 1802: 100–110.

    Article  CAS  PubMed  Google Scholar 

  • Dibrov E, Fu S, Lemire BD . (1998). The Saccharomyces cerevisiae TCM62 gene encodes a chaperone necessary for the assembly of the mitochondrial succinate dehydrogenase (complex II). J Biol Chem 273: 32042–32048.

    Article  CAS  PubMed  Google Scholar 

  • Distelmaier F, Koopman WJ, van den Heuvel LP, Rodenburg RJ, Mayatepek E, Willems PH et al. (2009). Mitochondrial complex I deficiency: from organelle dysfunction to clinical disease. Brain 132: 833–842.

    Article  PubMed  Google Scholar 

  • Dong LF, Freeman R, Liu J, Zobalova R, Marin-Hernandez A, Stantic M et al. (2009). Suppression of tumor growth in vivo by the mitocan alpha-tocopheryl succinate requires respiratory complex II. Clin Cancer Res 15: 1593–1600.

    Article  CAS  PubMed  Google Scholar 

  • Dong LF, Jameson VJ, Tilly D, Cerny J, Mahdavian E, Marin-Hernandez A et al. (2011a). Mitochondrial targeting of vitamin E succinate enhances its pro-apoptotic and anti-cancer activity. J Biol Chem 286: 3717–3728.

    Article  CAS  PubMed  Google Scholar 

  • Dong LF, Jameson VJ, Tilly D, Prochazka L, Rohlena J, Valis K et al. (2011b). Mitochondrial targeting of alpha-tocopheryl succinate enhances its pro-apoptotic efficacy: a new paradigm of efficient cancer therapy. Free Radic Biol Med 50: 1546–1555.

    Article  CAS  PubMed  Google Scholar 

  • Dong LF, Low P, Dyason JC, Wang XF, Prochazka L, Witting PK et al. (2008). Alpha-tocopheryl succinate induces apoptosis by targeting ubiquinone-binding sites in mitochondrial respiratory complex II. Oncogene 27: 4324–4335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong LF, Swettenham E, Eliasson J, Wang XF, Gold M, Medunic Y et al. (2007). Vitamin E analogues inhibit angiogenesis by selective induction of apoptosis in proliferating endothelial cells: the role of oxidative stress. Cancer Res 67: 11906–11913.

    Article  CAS  PubMed  Google Scholar 

  • Douwes Dekker PB, Hogendoorn PC, Kuipers-Dijkshoorn N, Prins FA, van Duinen SG, Taschner PE et al. (2003). SDHD mutations in head and neck paragangliomas result in destabilization of complex II in the mitochondrial respiratory chain with loss of enzymatic activity and abnormal mitochondrial morphology. J Pathol 201: 480–486.

    Article  CAS  PubMed  Google Scholar 

  • Favier J, Briere JJ, Burnichon N, Riviere J, Vescovo L, Benit P et al. (2009). The Warburg effect is genetically determined in inherited pheochromocytomas. PLoS One 4: e7094.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feichtinger RG, Zimmermann FA, Mayr JA, Neureiter D, Ratschek M, Jones N et al. (2011). Alterations of respiratory chain complexes in sporadic pheochromocytoma. Front Biosci (Elite Ed) 3: 194–200.

    Google Scholar 

  • Finsterer J . (2008). Leigh and Leigh-like syndrome in children and adults. Pediatr Neurol 39: 223–235.

    Article  PubMed  Google Scholar 

  • Fiorucci S, Mencarelli A, Distrutti E, Baldoni M, del Soldato P, Morelli A . (2004). Nitric oxide regulates immune cell bioenergetic: a mechanism to understand immunomodulatory functions of nitric oxide-releasing anti-inflammatory drugs. J Immunol 173: 874–882.

    Article  CAS  PubMed  Google Scholar 

  • Frezza C, Gottlieb E . (2009). Mitochondria in cancer: not just innocent bystanders. Semin Cancer Biol 19: 4–11.

    Article  CAS  PubMed  Google Scholar 

  • Gasparre G, Hervouet E, de Laplanche E, Demont J, Pennisi LF, Colombel M et al. (2008). Clonal expansion of mutated mitochondrial DNA is associated with tumor formation and complex I deficiency in the benign renal oncocytoma. Hum Mol Genet 17: 986–995.

    Article  CAS  PubMed  Google Scholar 

  • Gatenby RA, Gillies RJ . (2004). Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4: 891–899.

    Article  CAS  PubMed  Google Scholar 

  • Ghezzi D, Goffrini P, Uziel G, Horvath R, Klopstock T, Lochmuller H et al. (2009). SDHAF1, encoding a LYR complex-II specific assembly factor, is mutated in SDH-defective infantile leukoencephalopathy. Nat Genet 41: 654–656.

    Article  CAS  PubMed  Google Scholar 

  • Gimenez-Roqueplo AP, Burnichon N, Amar L, Favier J, Jeunemaitre X, Plouin PF . (2008). Recent advances in the genetics of phaeochromocytoma and functional paraganglioma. Clin Exp Pharmacol Physiol 35: 376–379.

    Article  CAS  PubMed  Google Scholar 

  • Gimenez-Roqueplo AP, Favier J, Rustin P, Mourad JJ, Plouin PF, Corvol P et al. (2001). The R22X mutation of the SDHD gene in hereditary paraganglioma abolishes the enzymatic activity of complex II in the mitochondrial respiratory chain and activates the hypoxia pathway. Am J Hum Genet 69: 1186–1197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gimenez-Roqueplo AP, Favier J, Rustin P, Rieubland C, Crespin M, Nau V et al. (2003). Mutations in the SDHB gene are associated with extra-adrenal and/or malignant phaeochromocytomas. Cancer Res 63: 5615–5621.

    CAS  PubMed  Google Scholar 

  • Gogvadze V, Orrenius S, Zhivotovsky B . (2009). Mitochondria as targets for cancer chemotherapy. Semin Cancer Biol 19: 57–66.

    Article  CAS  PubMed  Google Scholar 

  • Gogvadze V, Zhivotovsky B, Orrenius S . (2010). The Warburg effect and mitochondrial stability in cancer cells. Mol Aspects Med 31: 60–74.

    Article  CAS  PubMed  Google Scholar 

  • Gottlieb E, Tomlinson IP . (2005). Mitochondrial tumour suppressors: a genetic and biochemical update. Nat Rev Cancer 5: 857–866.

    Article  CAS  PubMed  Google Scholar 

  • Grimm S . (2004). The art and design of genetic screens: mammalian culture cells. Nat Rev Genet 5: 179–189.

    Article  CAS  PubMed  Google Scholar 

  • Gudz TI, Tserng KY, Hoppel CL . (1997). Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem 272: 24154–24158.

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Lemire BD . (2003). The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide. J Biol Chem 278: 47629–47635.

    Article  CAS  PubMed  Google Scholar 

  • Guo K, Searfoss G, Krolikowski D, Pagnoni M, Franks C, Clark K et al. (2001). Hypoxia induces the expression of the pro-apoptotic gene BNIP3. Cell Death Differ 8: 367–376.

    Article  CAS  PubMed  Google Scholar 

  • Guzy RD, Sharma B, Bell E, Chandel NS, Schumacker PT . (2008). Loss of the SdhB, but not the SdhA, subunit of complex II triggers reactive oxygen species-dependent hypoxia-inducible factor activation and tumorigenesis. Mol Cell Biol 28: 718–731.

    Article  CAS  PubMed  Google Scholar 

  • Habano W, Sugai T, Nakamura S, Uesugi N, Higuchi T, Terashima M et al. (2003). Reduced expression and loss of heterozygosity of the SDHD gene in colorectal and gastric cancer. Oncol Rep 10: 1375–1380.

    CAS  PubMed  Google Scholar 

  • Halicka HD, Ardelt B, Li X, Melamed MM, Darzynkiewicz Z . (1995). 2-Deoxy-D-glucose enhances sensitivity of human histiocytic lymphoma U937 cells to apoptosis induced by tumor necrosis factor. Cancer Res 55: 444–449.

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Hao HX, Khalimonchuk O, Schraders M, Dephoure N, Bayley JP, Kunst H et al. (2009). SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325: 1139–1142.

    Article  CAS  PubMed  Google Scholar 

  • He Y, Wu J, Dressman DC, Iacobuzio-Donahue C, Markowitz SD, Velculescu VE et al. (2010). Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 464: 610–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinz A, Sachs G, Schafer JA . (1981). Evidence for activation of an active electrogenic proton pump in Ehrlich ascites tumor cells during glycolysis. J Membr Biol 61: 143–153.

    Article  CAS  PubMed  Google Scholar 

  • Hensen EF, Bayley JP . (2011). Recent advances in the genetics of SDH-related paraganglioma and pheochromocytoma. Fam Cancer (e-pub ahead of print November 2010).

  • Hervouet E, Cizkova A, Demont J, Vojtiskova A, Pecina P, Franssen-van Hal NL et al. (2008). HIF and reactive oxygen species regulate oxidative phosphorylation in cancer. Carcinogenesis 29: 1528–1537.

    Article  CAS  PubMed  Google Scholar 

  • Horvath R, Abicht A, Holinski-Feder E, Laner A, Gempel K, Prokisch H et al. (2006). Leigh syndrome caused by mutations in the flavoprotein (Fp) subunit of succinate dehydrogenase (SDHA). J Neurol Neurosurg Psychiatry 77: 74–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Lemire BD . (2009). Mutations in the C elegans succinate dehydrogenase iron-sulfur subunit promote superoxide generation and premature aging. J Mol Biol 387: 559–569.

    Article  CAS  PubMed  Google Scholar 

  • Ishii N, Fujii M, Hartman PS, Tsuda M, Yasuda K, Senoo-Matsuda N et al. (1998). A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 394: 694–697.

    Article  CAS  PubMed  Google Scholar 

  • Ishii N, Ishii T, Hartman PS . (2007). The role of the electron transport SDHC gene on lifespan and cancer. Mitochondrion 7: 24–28.

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Miyazawa M, Onodera A, Yasuda K, Kawabe N, Kirinashizawa M et al. (2011). Mitochondrial reactive oxygen species generation by the SDHC V69E mutation causes low birth weight and neonatal growth retardation. Mitochondrion 11: 155–165.

    Article  CAS  PubMed  Google Scholar 

  • Ishii T, Yasuda K, Akatsuka A, Hino O, Hartman PS, Ishii N . (2005). A mutation in the SDHC gene of complex II increases oxidative stress, resulting in apoptosis and tumorigenesis. Cancer Res 65: 203–209.

    CAS  PubMed  Google Scholar 

  • Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H et al. (2008). ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320: 661–664.

    Article  CAS  PubMed  Google Scholar 

  • Janeway KA, Kim SY, Lodish M, Nose V, Rustin P, Gaal J et al. (2011). Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc Natl Acad Sci USA 108: 314–318.

    Article  CAS  PubMed  Google Scholar 

  • Kazama H, Ricci JE, Herndon JM, Hoppe G, Green DR, Ferguson TA . (2008). Induction of immunological tolerance by apoptotic cells requires caspase-dependent oxidation of high-mobility group box-1 protein. Immunity 29: 21–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV . (2006). HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 3: 177–185.

    Article  PubMed  CAS  Google Scholar 

  • Klanner C, Neupert W, Langer T . (2000). The chaperonin-related protein Tcm62p ensures mitochondrial gene expression under heat stress. FEBS Lett 470: 365–369.

    Article  CAS  PubMed  Google Scholar 

  • Krahenbuhl S, Chang M, Brass EP, Hoppel CL . (1991). Decreased activities of ubiquinol:ferricytochrome c oxidoreductase (complex III) and ferrocytochrome c:oxygen oxidoreductase (complex IV) in liver mitochondria from rats with hydroxycobalamin[c-lactam]-induced methylmalonic aciduria. J Biol Chem 266: 20998–21003.

    Article  CAS  PubMed  Google Scholar 

  • Kudin AP, Bimpong-Buta NY, Vielhaber S, Elger CE, Kunz WS . (2004). Characterization of superoxide-producing sites in isolated brain mitochondria. J Biol Chem 279: 4127–4135.

    Article  CAS  PubMed  Google Scholar 

  • Kussmaul L, Hirst J . (2006). The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc Natl Acad Sci USA 103: 7607–7612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwong JQ, Henning MS, Starkov AA, Manfredi G . (2007). The mitochondrial respiratory chain is a modulator of apoptosis. J Cell Biol 179: 1163–1177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lagadic-Gossmann D, Huc L, Lecureur V . (2004). Alterations of intracellular pH homeostasis in apoptosis: origins and roles. Cell Death Differ 11: 953–961.

    Article  CAS  PubMed  Google Scholar 

  • Lartigue L, Kushnareva Y, Seong Y, Lin H, Faustin B, Newmeyer DD . (2009). Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release. Mol Biol Cell 20: 4871–4884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le SB, Hailer MK, Buhrow S, Wang Q, Flatten K, Pediaditakis P et al. (2007). Inhibition of mitochondrial respiration as a source of adaphostin-induced reactive oxygen species and cytotoxicity. J Biol Chem 282: 8860–8872.

    Article  CAS  PubMed  Google Scholar 

  • Lee S, Nakamura E, Yang H, Wei W, Linggi MS, Sajan MP et al. (2005). Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial pheochromocytoma genes: developmental culling and cancer. Cancer Cell 8: 155–167.

    Article  PubMed  CAS  Google Scholar 

  • Lehtonen HJ, Makinen MJ, Kiuru M, Laiho P, Herva R, van Minderhout I et al. (2007). Increased HIF1 alpha in SDH and FH deficient tumors does not cause microsatellite instability. Int J Cancer 121: 1386–1389.

    Article  CAS  PubMed  Google Scholar 

  • Lemarie A, Grimm S . (2009). Mutations in the heme b-binding residue of SDHC inhibit assembly of respiratory chain complex II in mammalian cells. Mitochondrion 9: 254–260.

    Article  CAS  PubMed  Google Scholar 

  • Lemarie A, Huc L, Pazarentzos E, Mahul-Mellier AL, Grimm S . (2011). Specific disintegration of complex II succinate:ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis induction. Cell Death Differ 18: 338–349.

    Article  CAS  PubMed  Google Scholar 

  • Lenaz G, Genova ML . (2010). Structure and organization of mitochondrial respiratory complexes: a new understanding of an old subject. Antioxid Redox Signal 12: 961–1008.

    Article  CAS  PubMed  Google Scholar 

  • Levitas A, Muhammad E, Harel G, Saada A, Caspi VC, Manor E et al. (2010). Familial neonatal isolated cardiomyopathy caused by a mutation in the flavoprotein subunit of succinate dehydrogenase. Eur J Hum Genet 18: 1160–1165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liot G, Bossy B, Lubitz S, Kushnareva Y, Sejbuk N, Bossy-Wetzel E . (2009). Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway. Cell Death Differ 16: 899–909.

    Article  CAS  PubMed  Google Scholar 

  • Lluis JM, Buricchi F, Chiarugi P, Morales A, Fernandez-Checa JC . (2007). Dual role of mitochondrial reactive oxygen species in hypoxia signaling: activation of nuclear factor-{kappa}B via c-SRC and oxidant-dependent cell death. Cancer Res 67: 7368–7377.

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Sharma LK, Bai Y . (2009). Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis. Cell Res 19: 802–815.

    Article  CAS  PubMed  Google Scholar 

  • Maklashina E, Cecchini G . (2010). The quinone-binding and catalytic site of complex II. Biochim Biophys Acta 1797: 1877–1882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandavilli BS, Boldogh I, Van Houten B . (2005). 3-nitropropionic acid-induced hydrogen peroxide, mitochondrial DNA damage, and cell death are attenuated by Bcl-2 overexpression in PC12 cells. Brain Res Mol Brain Res 133: 215–223.

    Article  CAS  PubMed  Google Scholar 

  • Martinvalet D, Dykxhoorn DM, Ferrini R, Lieberman J . (2008). Granzyme A cleaves a mitochondrial complex I protein to initiate caspase-independent cell death. Cell 133: 681–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinvalet D, Zhu P, Lieberman J . (2005). Granzyme A induces caspase-independent mitochondrial damage, a required first step for apoptosis. Immunity 22: 355–370.

    Article  CAS  PubMed  Google Scholar 

  • Mason MG, Nicholls P, Wilson MT, Cooper CE . (2006). Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc Natl Acad Sci USA 103: 708–713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mast JD, Tomalty KM, Vogel H, Clandinin TR . (2008). Reactive oxygen species act remotely to cause synapse loss in a Drosophila model of developmental mitochondrial encephalopathy. Development 135: 2669–2679.

    Article  CAS  PubMed  Google Scholar 

  • Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O et al. (2006). p53 regulates mitochondrial respiration. Science 312: 1650–1653.

    Article  CAS  PubMed  Google Scholar 

  • Mbaya E, Oules B, Caspersen C, Tacine R, Massinet H, Pennuto M et al. (2010). Calcium signalling-dependent mitochondrial dysfunction and bioenergetics regulation in respiratory chain Complex II deficiency. Cell Death Differ 17: 1855–1866.

    Article  CAS  PubMed  Google Scholar 

  • McLaughlin BA, Nelson D, Silver IA, Erecinska M, Chesselet MF . (1998). Methylmalonate toxicity in primary neuronal cultures. Neuroscience 86: 279–290.

    Article  CAS  PubMed  Google Scholar 

  • McLennan HR, Degli Esposti M . (2000). The contribution of mitochondrial respiratory complexes to the production of reactive oxygen species. J Bioenerg Biomembr 32: 153–162.

    Article  CAS  PubMed  Google Scholar 

  • McWhinney SR, Pasini B, Stratakis CA . (2007). Familial gastrointestinal stromal tumors and germ-line mutations. N Engl J Med 357: 1054–1056.

    Article  CAS  PubMed  Google Scholar 

  • Michelakis ED, Sutendra G, Dromparis P, Webster L, Haromy A, Niven E et al. (2010). Metabolic modulation of glioblastoma with dichloroacetate. Sci Transl Med 2: 31ra34.

    Article  CAS  PubMed  Google Scholar 

  • Michelakis ED, Webster L, Mackey JR . (2008). Dichloroacetate (DCA) as a potential metabolic-targeting therapy for cancer. Br J Cancer 99: 989–994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyadera H, Shiomi K, Ui H, Yamaguchi Y, Masuma R, Tomoda H et al. (2003). Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase). Proc Natl Acad Sci USA 100: 473–477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreira PI, Custodio J, Moreno A, Oliveira CR, Santos MS . (2006). Tamoxifen and estradiol interact with the flavin mononucleotide site of complex I leading to mitochondrial failure. J Biol Chem 281: 10143–10152.

    Article  CAS  PubMed  Google Scholar 

  • Muntané J, la Mata MD . (2010). Nitric oxide and cancer. World J Hepatol 2: 337–344.

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy MP . (2009). How mitochondria produce reactive oxygen species. Biochem J 417: 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Nakamura K, Yamaki M, Sarada M, Nakayama S, Vibat CR, Gennis RB et al. (1996). Two hydrophobic subunits are essential for the heme b ligation and functional assembly of complex II (succinate-ubiquinone oxidoreductase) from Escherichia coli. J Biol Chem 271: 521–527.

    Article  CAS  PubMed  Google Scholar 

  • Neumann HP, Pawlu C, Peczkowska M, Bausch B, McWhinney SR, Muresan M et al. (2004). Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 292: 943–951.

    Article  CAS  PubMed  Google Scholar 

  • Niemann S, Muller U . (2000). Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26: 268–270.

    Article  CAS  PubMed  Google Scholar 

  • Nijtmans LG, Artal SM, Grivell LA, Coates PJ . (2002). The mitochondrial PHB complex: roles in mitochondrial respiratory complex assembly, ageing and degenerative disease. Cell Mol Life Sci 59: 143–155.

    Article  CAS  PubMed  Google Scholar 

  • Nijtmans LG, de Jong L, Artal Sanz M, Coates PJ, Berden JA, Back JW et al. (2000). Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J 19: 2444–2451.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta S . (2006). Contribution of somatic mutations in the mitochondrial genome to the development of cancer and tolerance against anticancer drugs. Oncogene 25: 4768–4776.

    Article  CAS  PubMed  Google Scholar 

  • Oostveen FG, Au HC, Meijer PJ, Scheffler IE . (1995). A Chinese hamster mutant cell line with a defect in the integral membrane protein CII-3 of complex II of the mitochondrial electron transport chain. J Biol Chem 270: 26104–26108.

    Article  CAS  PubMed  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B . (2007). Mitochondria, oxidative stress and cell death. Apoptosis 12: 913–922.

    Article  CAS  PubMed  Google Scholar 

  • Oyedotun KS, Sit CS, Lemire BD . (2007). The Saccharomyces cerevisiae succinate dehydrogenase does not require heme for ubiquinone reduction. Biochim Biophys Acta 1767: 1436–1445.

    Article  CAS  PubMed  Google Scholar 

  • Paddenberg R, Ishaq B, Goldenberg A, Faulhammer P, Rose F, Weissmann N et al. (2003). Essential role of complex II of the respiratory chain in hypoxia-induced ROS generation in the pulmonary vasculature. Am J Physiol Lung Cell Mol Physiol 284: L710–L719.

    Article  CAS  PubMed  Google Scholar 

  • Pagnamenta AT, Hargreaves IP, Duncan AJ, Taanman JW, Heales SJ, Land JM et al. (2006). Phenotypic variability of mitochondrial disease caused by a nuclear mutation in complex II. Mol Genet Metab 89: 214–221.

    Article  CAS  PubMed  Google Scholar 

  • Pang Z, Geddes JW . (1997). Mechanisms of cell death induced by the mitochondrial toxin 3-nitropropionic acid: acute excitotoxic necrosis and delayed apoptosis. J Neurosci 17: 3064–3073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC . (2006). HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 3: 187–197.

    Article  CAS  PubMed  Google Scholar 

  • Parfait B, Chretien D, Rotig A, Marsac C, Munnich A, Rustin P . (2000). Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome. Hum Genet 106: 236–243.

    Article  CAS  PubMed  Google Scholar 

  • Park JS, Sharma LK, Li H, Xiang R, Holstein D, Wu J et al. (2009). A heteroplasmic, not homoplasmic, mitochondrial DNA mutation promotes tumorigenesis via alteration in reactive oxygen species generation and apoptosis. Hum Mol Genet 18: 1578–1589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pelicano H, Carney D, Huang P . (2004). ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7: 97–110.

    Article  CAS  PubMed  Google Scholar 

  • Pelicano H, Martin DS, Xu RH, Huang P . (2006). Glycolysis inhibition for anticancer treatment. Oncogene 25: 4633–4646.

    Article  CAS  PubMed  Google Scholar 

  • Penta JS, Johnson FM, Wachsman JT, Copeland WC . (2001). Mitochondrial DNA in human malignancy. Mutat Res 488: 119–133.

    Article  CAS  PubMed  Google Scholar 

  • Petros JA, Baumann AK, Ruiz-Pesini E, Amin MB, Sun CQ, Hall J et al. (2005). mtDNA mutations increase tumorigenicity in prostate cancer. Proc Natl Acad Sci USA 102: 719–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piantadosi CA, Suliman HB . (2008). Transcriptional Regulation of SDHa flavoprotein by nuclear respiratory factor-1 prevents pseudo-hypoxia in aerobic cardiac cells. J Biol Chem 283: 10967–10977.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E, Wortham NC et al. (2005). Accumulation of Krebs cycle intermediates and over-expression of HIF1alpha in tumours which result from germline FH and SDH mutations. Hum Mol Genet 14: 2231–2239.

    Article  CAS  PubMed  Google Scholar 

  • Pollard PJ, El-Bahrawy M, Poulsom R, Elia G, Killick P, Kelly G et al. (2006). Expression of HIF-1alpha, HIF-2alpha (EPAS1), and their target genes in paraganglioma and pheochromocytoma with VHL and SDH mutations. J Clin Endocrinol Metab 91: 4593–4598.

    Article  CAS  PubMed  Google Scholar 

  • Polyak K, Li Y, Zhu H, Lengauer C, Willson JK, Markowitz SD et al. (1998). Somatic mutations of the mitochondrial genome in human colorectal tumours. Nat Genet 20: 291–293.

    Article  CAS  PubMed  Google Scholar 

  • Prochazka L, Dong LF, Valis K, Freeman R, Ralph SJ, Turanek J et al. (2010). alpha-Tocopheryl succinate causes mitochondrial permeabilization by preferential formation of Bak channels. Apoptosis 15: 782–794.

    Article  CAS  PubMed  Google Scholar 

  • Puissegur MP, Mazure NM, Bertero T, Pradelli L, Grosso S, Robbe-Sermesant K et al. (2011). miR-210 is overexpressed in late stages of lung cancer and mediates mitochondrial alterations associated with modulation of HIF-1 activity. Cell Death Differ 18: 465–478.

    Article  CAS  PubMed  Google Scholar 

  • Putignani L, Raffa S, Pescosolido R, Aimati L, Signore F, Torrisi MR et al. (2008). Alteration of expression levels of the oxidative phosphorylation system (OXPHOS) in breast cancer cell mitochondria. Breast Cancer Res Treat 110: 439–452.

    Article  CAS  PubMed  Google Scholar 

  • Ralph SJ, Neuzil J . (2009). Mitocans, a class of emerging anti-cancer drugs. Mol Nutr Food Res 53: 7–8.

    Article  CAS  PubMed  Google Scholar 

  • Ralph SJ, Rodriguez-Enriquez S, Neuzil J, Saavedra E, Moreno-Sanchez R . (2010). The causes of cancer revisited: ‘mitochondrial malignancy’ and ROS-induced oncogenic transformation-why mitochondria are targets for cancer therapy. Mol Aspects Med 31: 145–170.

    Article  CAS  PubMed  Google Scholar 

  • Ricci JE, Gottlieb RA, Green DR . (2003a). Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol 160: 65–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricci JE, Munoz-Pinedo C, Fitzgerald P, Bailly-Maitre B, Perkins GA, Yadava N et al. (2004). Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 117: 773–786.

    Article  CAS  PubMed  Google Scholar 

  • Ricci JE, Waterhouse N, Green DR . (2003b). Mitochondrial functions during cell death, a complex (I-V) dilemma. Cell Death Differ 10: 488–492.

    Article  CAS  PubMed  Google Scholar 

  • Ricketts C, Woodward ER, Killick P, Morris MR, Astuti D, Latif F et al. (2008). Germline SDHB mutations and familial renal cell carcinoma. J Natl Cancer Inst 100: 1260–1262.

    Article  CAS  PubMed  Google Scholar 

  • Rikka S, Quinsay MN, Thomas RL, Kubli DA, Zhang X, Murphy AN et al. (2011). Bnip3 impairs mitochondrial bioenergetics and stimulates mitochondrial turnover. Cell Death Differ 18: 721–731.

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez-Enriquez S, Juarez O, Rodriguez-Zavala JS, Moreno-Sanchez R . (2001). Multisite control of the Crabtree effect in ascites hepatoma cells. Eur J Biochem 268: 2512–2519.

    Article  CAS  PubMed  Google Scholar 

  • Rutter J, Winge DR, Schiffman JD . (2010). Succinate dehydrogenase—assembly, regulation and role in human disease. Mitochondrion 10: 393–401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryland LK, Fox TE, Liu X, Loughran TP, Kester M . (2011). Dysregulation of sphingolipid metabolism in cancer. Cancer Biol Ther 11: 138–149.

    Article  CAS  PubMed  Google Scholar 

  • Schapira AH . (2010). Complex I: inhibitors, inhibition and neurodegeneration. Exp Neurol 224: 331–335.

    Article  CAS  PubMed  Google Scholar 

  • Schimke RN, Collins DL, Stolle CA . (2010). Paraganglioma, neuroblastoma, and a SDHB mutation: resolution of a 30-year-old mystery. Am J Med Genet A 152A: 1531–1535.

    PubMed  Google Scholar 

  • Schlisio S, Kenchappa RS, Vredeveld LC, George RE, Stewart R, Greulich H et al. (2008). The kinesin KIF1Bbeta acts downstream from EglN3 to induce apoptosis and is a potential 1p36 tumor suppressor. Genes Dev 22: 884–893.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG, Mansfield KD et al. (2005). Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-alpha prolyl hydroxylase. Cancer Cell 7: 77–85.

    Article  CAS  PubMed  Google Scholar 

  • Selak MA, Duran RV, Gottlieb E . (2006). Redox stress is not essential for the pseudo-hypoxic phenotype of succinate dehydrogenase deficient cells. Biochim Biophys Acta 1757: 567–572.

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P et al. (1996). Hypoxia response elements in the aldolase A, enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem 271: 32529–32537.

    Article  CAS  PubMed  Google Scholar 

  • Senoo-Matsuda N, Hartman PS, Akatsuka A, Yoshimura S, Ishii N . (2003). A complex II defect affects mitochondrial structure, leading to ced-3- and ced-4-dependent apoptosis and aging. J Biol Chem 278: 22031–22036.

    Article  CAS  PubMed  Google Scholar 

  • Senoo-Matsuda N, Yasuda K, Tsuda M, Ohkubo T, Yoshimura S, Nakazawa H et al. (2001). A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans. J Biol Chem 276: 41553–41558.

    Article  CAS  PubMed  Google Scholar 

  • Shidara Y, Yamagata K, Kanamori T, Nakano K, Kwong JQ, Manfredi G et al. (2005). Positive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis. Cancer Res 65: 1655–1663.

    Article  CAS  PubMed  Google Scholar 

  • Siskind LJ . (2005). Mitochondrial ceramide and the induction of apoptosis. J Bioenerg Biomembr 37: 143–153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Slane BG, Aykin-Burns N, Smith BJ, Kalen AL, Goswami PC, Domann FE et al. (2006). Mutation of succinate dehydrogenase subunit C results in increased O2.-, oxidative stress, and genomic instability. Cancer Res 66: 7615–7620.

    Article  CAS  PubMed  Google Scholar 

  • Smith EH, Janknecht R, Maher III LJ . (2007). Succinate inhibition of alpha-ketoglutarate-dependent enzymes in a yeast model of paraganglioma. Hum Mol Genet 16: 3136–3148.

    Article  CAS  PubMed  Google Scholar 

  • Solaini G, Baracca A, Lenaz G, Sgarbi G . (2010). Hypoxia and mitochondrial oxidative metabolism. Biochim Biophys Acta 1797: 1171–1177.

    Article  CAS  PubMed  Google Scholar 

  • Soller M, Drose S, Brandt U, Brune B, von Knethen A . (2007). Mechanism of thiazolidinedione-dependent cell death in Jurkat T cells. Mol Pharmacol 71: 1535–1544.

    Article  CAS  PubMed  Google Scholar 

  • Sun F, Huo X, Zhai Y, Wang A, Xu J, Su D et al. (2005). Crystal structure of mitochondrial respiratory membrane protein complex II. Cell 121: 1043–1057.

    Article  CAS  PubMed  Google Scholar 

  • Szeto SS, Reinke SN, Sykes BD, Lemire BD . (2007). Ubiquinone-binding site mutations in the Saccharomyces cerevisiae succinate dehydrogenase generate superoxide and lead to the accumulation of succinate. J Biol Chem 282: 27518–27526.

    Article  CAS  PubMed  Google Scholar 

  • Tran QM, Rothery RA, Maklashina E, Cecchini G, Weiner JH . (2006). The quinone binding site in Escherichia coli succinate dehydrogenase is required for electron transfer to the heme b. J Biol Chem 281: 32310–32317.

    Article  CAS  PubMed  Google Scholar 

  • Tran QM, Rothery RA, Maklashina E, Cecchini G, Weiner JH . (2007). Escherichia coli succinate dehydrogenase variant lacking the heme b. Proc Natl Acad Sci USA 104: 18007–18012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Coster R, Seneca S, Smet J, Van Hecke R, Gerlo E, Devreese B et al. (2003). Homozygous Gly555Glu mutation in the nuclear-encoded 70 kDa flavoprotein gene causes instability of the respiratory chain complex II. Am J Med Genet A 120A: 13–18.

    Article  PubMed  Google Scholar 

  • Van Nederveen FH, Gaal J, Favier J, Korpershoek E, Oldenburg RA, de Bruyn EM et al. (2009). An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol 10: 764–771.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vander Heiden MG, Choy JS, VanderWeele DJ, Brace JL, Harris MH, Bauer DE et al. (2002). Bcl-x(L) complements Saccharomyces cerevisiae genes that facilitate the switch from glycolytic to oxidative metabolism. J Biol Chem 277: 44870–44876.

    Article  CAS  PubMed  Google Scholar 

  • Waldmann J, Langer P, Habbe N, Fendrich V, Ramaswamy A, Rothmund M et al. (2009). Mutations and polymorphisms in the SDHB, SDHD, VHL, and RET genes in sporadic and familial pheochromocytomas. Endocrine 35: 347–355.

    Article  CAS  PubMed  Google Scholar 

  • Walker DW, Hajek P, Muffat J, Knoepfle D, Cornelison S, Attardi G et al. (2006). Hypersensitivity to oxygen and shortened lifespan in a Drosophila mitochondrial complex II mutant. Proc Natl Acad Sci USA 103: 16382–16387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace KB, Starkov AA . (2000). Mitochondrial targets of drug toxicity. Annu Rev Pharmaco Toxicol 40: 353–388.

    Article  CAS  Google Scholar 

  • Wink DA, Ridnour LA, Hussain SP, Harris CC . (2008). The reemergence of nitric oxide and cancer. Nitric Oxide 19: 192–198.

    Article  CAS  Google Scholar 

  • Wojtczak L . (1996). The Crabtree effect: a new look at the old problem. Acta Biochim Pol 43: 361–368.

    Article  CAS  PubMed  Google Scholar 

  • Wojtczak L, Teplova VV, Bogucka K, Czyz A, Makowska A, Wieckowski MR et al. (1999). Effect of glucose and deoxyglucose on the redistribution of calcium in ehrlich ascites tumour and Zajdela hepatoma cells and its consequences for mitochondrial energetics. Further arguments for the role of Ca(2+) in the mechanism of the crabtree effect. Eur J Biochem 263: 495–501.

    Article  CAS  PubMed  Google Scholar 

  • Xu RH, Pelicano H, Zhou Y, Carew JS, Feng L, Bhalla KN et al. (2005). Inhibition of glycolysis in cancer cells: a novel strategy to overcome drug resistance associated with mitochondrial respiratory defect and hypoxia. Cancer Res 65: 613–621.

    CAS  PubMed  Google Scholar 

  • Yang X, Borg LA, Eriksson UJ . (1997). Altered metabolism and superoxide generation in neural tissue of rat embryos exposed to high glucose. Am J Physiol 272: E173–E180.

    Article  CAS  PubMed  Google Scholar 

  • Yankovskaya V, Horsefield R, Tornroth S, Luna-Chavez C, Miyoshi H, Leger C et al. (2003). Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299: 700–704.

    Article  CAS  PubMed  Google Scholar 

  • Yeung SJ, Pan J, Lee MH . (2008). Roles of p53, MYC and HIF-1 in regulating glycolysis - the seventh hallmark of cancer. Cell Mol Life Sci 65: 3981–3999.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Marcillat O, Giulivi C, Ernster L, Davies KJ . (1990). The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J Biol Chem 265: 16330–16336.

    Article  CAS  PubMed  Google Scholar 

  • Zhao Z, Rothery RA, Weiner JH . (2006). Effects of site-directed mutations in Escherichia coli succinate dehydrogenase on the enzyme activity and production of superoxide radicals. Biochem Cell Biol 84: 1013–1021.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from Cancer Research UK (to AL and SG) as well as from la Ligue Nationale Contre le Cancer (Hautes-Pyrénées and Haute-Garonne committees; to AL) and support by the Wellcome Trust, CRUK, MRC, Breast Cancer Campaign (to SG).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Lemarie or S Grimm.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemarie, A., Grimm, S. Mitochondrial respiratory chain complexes: apoptosis sensors mutated in cancer?. Oncogene 30, 3985–4003 (2011). https://doi.org/10.1038/onc.2011.167

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.167

Keywords

This article is cited by

Search

Quick links