Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Camptothecin-induced downregulation of MLL5 contributes to the activation of tumor suppressor p53

Abstract

Mixed lineage leukemia 5 (MLL5) has been implicated in multiple aspects of cell physiology, such as hematopoiesis, cell cycle control and chromatin regulatory network. In this study, we present evidence that MLL5 is involved in the camptothecin (CPT)-induced p53 activation. CPT promoted the degradation of MLL5 protein in a time- and dose-dependent manner in actively replicating cells. The downregulation of MLL5 led to phosphorylation of p53 at Ser392, which was abrogated by exogenous overexpression of MLL5. In MLL5-knockdown cells, p53 protein was stabilized and bound to DNA with higher affinity, leading to activation of downstream genes. Co-immunoprecipitation showed that MLL5 preferentially interacted with the tetramerized form of p53, and knockdown of MLL5 promoted chromatin accumulation of p53 tetramers, suggesting that the association of MLL5 with p53 may prevent the p53 tetramers from binding to the chromatin target sites. The role of MLL5 in CPT-induced p53 activation was conserved in developing zebrafish, where CPT downregulated zebrafish Mll5 protein, and the microinjection of zebrafish mll5 mRNA substantially blocked the CPT-induced apoptosis. In summary, our study proposed MLL5 as a novel component in the regulation of p53 homeostasis and a new cellular determinant of CPT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Bartek J, Lukas J . (2001). Mammalian G1- and S-phase checkpoints in response to DNA damage. Curr Opin Cell Biol 13: 738–747.

    Article  CAS  PubMed  Google Scholar 

  • Berger SL . (2002). Histone modifications in transcriptional regulation. Curr Opin Genet Dev 12: 142–148.

    Article  CAS  PubMed  Google Scholar 

  • Bode AM, Dong Z . (2004). Post-translational modification of p53 in tumorigenesis. Nat Rev Cancer 4: 793–805.

    Article  CAS  PubMed  Google Scholar 

  • Bunz F, Dutriaux A, Lengauer C, Waldman T, Zhou S, Brown JP et al. (1998). Requirement for p53 and p21 to sustain G2 arrest after DNA damage. Science 282: 1497–1501.

    Article  CAS  PubMed  Google Scholar 

  • Chene P . (2001). The role of tetramerization in p53 function. Oncogene 20: 2611–2617.

    Article  CAS  PubMed  Google Scholar 

  • Cheng F, Liu J, Zhou SH, Wang XN, Chew JF, Deng LW . (2008). RNA interference against mixed lineage leukemia 5 resulted in cell cycle arrest. Int J Biochem Cell Biol 40: 2472–2481.

    Article  CAS  PubMed  Google Scholar 

  • Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS et al. (2004). Regulation of p53 activity through lysine methylation. Nature 432: 353–360.

    Article  CAS  PubMed  Google Scholar 

  • Claudio PP, Cui J, Ghafouri M, Mariano C, White MK, Safak M et al. (2006). Cdk9 phosphorylates p53 on serine 392 independently of CKII. J Cell Physiol 208: 602–612.

    Article  CAS  PubMed  Google Scholar 

  • Cuddihy AR, Wong AH, Tam NW, Li S, Koromilas AE . (1999). The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro. Oncogene 18: 2690–2702.

    Article  CAS  PubMed  Google Scholar 

  • Dambacher S, Hahn M, Schotta G . (2010). Epigenetic regulation of development by histone lysine methylation. Heredity 105: 24–37.

    Article  CAS  PubMed  Google Scholar 

  • Deng LW, Chiu I, Strominger JL . (2004). MLL 5 protein forms intranuclear foci, and overexpression inhibits cell cycle progression. Proc Natl Acad Sci USA 101: 757–762.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desai SD, Li TK, Rodriguez-Bauman A, Rubin EH, Liu LF . (2001). Ubiquitin/26S proteasome-mediated degradation of topoisomerase I as a resistance mechanism to camptothecin in tumor cells. Cancer Res 61: 5926–5932.

    CAS  PubMed  Google Scholar 

  • Dimri GP, Hara E, Campisi J . (1994). Regulation of two E2F-related genes in presenescent and senescent human fibroblasts. J Biol Chem 269: 16180–16186.

    CAS  PubMed  Google Scholar 

  • Dul BE, Walworth NC . (2007). The plant homeodomain fingers of fission yeast Msc1 exhibit E3 ubiquitin ligase activity. J Biol Chem 282: 18397–18406.

    Article  CAS  PubMed  Google Scholar 

  • Elledge SJ . (1996). Cell cycle checkpoints: preventing an identity crisis. Science 274: 1664–1672.

    Article  CAS  PubMed  Google Scholar 

  • Emerling BM, Bonifas J, Kratz CP, Donovan S, Taylor BR, Green ED et al. (2002). MLL5, a homolog of Drosophila trithorax located within a segment of chromosome band 7q22 implicated in myeloid leukemia. Oncogene 21: 4849–4854.

    Article  CAS  PubMed  Google Scholar 

  • Eng WK, Faucette L, Johnson RK, Sternglanz R . (1988). Evidence that DNA topoisomerase I is necessary for the cytotoxic effects of camptothecin. Mol Pharmacol 34: 755–760.

    CAS  PubMed  Google Scholar 

  • Foo RS, Nam YJ, Ostreicher MJ, Metzl MD, Whelan RS, Peng CF et al. (2007). Regulation of p53 tetramerization and nuclear export by ARC. Proc Natl Acad Sci USA 104: 20826–20831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friedman PN, Chen X, Bargonetti J, Prives C . (1993). The p53 protein is an unusually shaped tetramer that binds directly to DNA. Proc Natl Acad Sci USA 90: 3319–3323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujiki R, Chikanishi T, Hashiba W, Ito H, Takada I, Roeder RG et al. (2009). GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis. Nature 459: 455–459.

    Article  CAS  PubMed  Google Scholar 

  • Gostissa M, Hengstermann A, Fogal V, Sandy P, Schwarz SE, Scheffner M et al. (1999). Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1. EMBO J 18: 6462–6471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman SR, Deato ME, Brignone C, Chan HM, Kung AL, Tagami H et al. (2003). Polyubiquitination of p53 by a ubiquitin ligase activity of p300. Science 300: 342–344.

    Article  CAS  PubMed  Google Scholar 

  • Haupt Y, Maya R, Kazaz A, Oren M . (1997). Mdm2 promotes the rapid degradation of p53. Nature 387: 296–299.

    Article  CAS  PubMed  Google Scholar 

  • Houser S, Koshlatyi S, Lu T, Gopen T, Bargonetti J . (2001). Camptothecin and Zeocin can increase p53 levels during all cell cycle stages. Biochem Biophys Res Commun 289: 998–1009.

    Article  CAS  PubMed  Google Scholar 

  • Huang C, Ma WY, Maxiner A, Sun Y, Dong Z . (1999). p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. J Biol Chem 274: 12229–12235.

    Article  CAS  PubMed  Google Scholar 

  • Huang TT, Wuerzberger-Davis SM, Seufzer BJ, Shumway SD, Kurama T, Boothman DA et al. (2000). NF-kappaB activation by camptothecin. A linkage between nuclear DNA damage and cytoplasmic signaling events. J Biol Chem 275: 9501–9509.

    Article  CAS  PubMed  Google Scholar 

  • Hughes CM, Rozenblatt-Rosen O, Milne TA, Copeland TD, Levine SS, Lee JC et al. (2004). Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 13: 587–597.

    Article  CAS  PubMed  Google Scholar 

  • Keller DM, Zeng X, Wang Y, Zhang QH, Kapoor M, Shu H et al. (2001). A DNA damage-induced p53 serine 392 kinase complex contains CK2, hSpt16, and SSRP1. Mol Cell 7: 283–292.

    Article  CAS  PubMed  Google Scholar 

  • Kim T, Buratowski S . (2009). Dimethylation of H3K4 by Set1 recruits the Set3 histone deacetylase complex to 5’ transcribed regions. Cell 137: 259–272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouzarides T . (2002). Histone methylation in transcriptional control. Curr Opin Genet Dev 12: 198–209.

    Article  CAS  PubMed  Google Scholar 

  • Langheinrich U, Hennen E, Stott G, Vacun G . (2002). Zebrafish as a model organism for the identification and characterization of drugs and genes affecting p53 signaling. Curr Biol 12: 2023–2028.

    Article  CAS  PubMed  Google Scholar 

  • Le MT, Teh C, Shyh-Chang N, Xie H, Zhou B, Korzh V et al. (2009). MicroRNA-125b is a novel negative regulator of p53. Genes Dev 23: 862–876.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee TI, Johnstone SE, Young RA . (2006). Chromatin immunoprecipitation and microarray-based analysis of protein location. Nat Protoc 1: 729–748.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li TK, Liu LF . (2001). Tumor cell death induced by topoisomerase-targeting drugs. Annu Rev Pharmacol Toxicol 41: 53–77.

    Article  PubMed  Google Scholar 

  • Liu H, Takeda S, Kumar R, Westergard TD, Brown EJ, Pandita TK et al. (2010a). Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 467: 343–346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Wang XN, Cheng F, Liou YC, Deng LW . (2010b). Phosphorylation of mixed lineage leukemia 5 by CDC2 affects its cellular distribution and is required for mitotic entry. J Biol Chem 285: 20904–20914.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD et al. (1999). p53 sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19: 1202–1209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu LF . (1989). DNA topoisomerase poisons as antitumor drugs. Annu Rev Biochem 58: 351–375.

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Taya Y, Ikeda M, Levine AJ . (1998). Ultraviolet radiation, but not gamma radiation or etoposide-induced DNA damage, results in the phosphorylation of the murine p53 protein at serine-389. Proc Natl Acad Sci USA 95: 6399–6402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mendez J, Stillman B . (2000). Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: assembly of prereplication complexes in late mitosis. Mol Cell Biol 20: 8602–8612.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nitiss J, Wang JC . (1988). DNA topoisomerase-targeting antitumor drugs can be studied in yeast. Proc Natl Acad Sci USA 85: 7501–7505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nyberg KA, Michelson RJ, Putnam CW, Weinert TA . (2002). Toward maintaining the genome: DNA damage and replication checkpoints. Annu Rev Genet 36: 617–656.

    Article  CAS  PubMed  Google Scholar 

  • Pommier Y, Pourquier P, Urasaki Y, Wu J, Laco GS . (1999). Topoisomerase I inhibitors: selectivity and cellular resistance. Drug Resist Updat 2: 307–318.

    Article  CAS  PubMed  Google Scholar 

  • Pommier Y . (2006). Topoisomerase I inhibitors: camptothecins and beyond. Nat Rev Cancer 6: 789–802.

    Article  CAS  PubMed  Google Scholar 

  • Ryan AJ, Squires S, Strutt HL, Johnson RT . (1991). Camptothecin cytotoxicity in mammalian cells is associated with the induction of persistent double strand breaks in replicating DNA. Nucleic Acids Res 19: 3295–3300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakaguchi K, Sakamoto H, Lewis MS, Anderson CW, Erickson JW, Appella E et al. (1997). Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry 36: 10117–10124.

    Article  CAS  PubMed  Google Scholar 

  • Sarkaria JN, Busby EC, Tibbetts RS, Roos P, Taya Y, Karnitz LM et al. (1999). Inhibition of ATM and ATR kinase activities by the radiosensitizing agent, caffeine. Cancer Res 59: 4375–4382.

    CAS  PubMed  Google Scholar 

  • Scheel H, Hofmann K . (2003). No evidence for PHD fingers as ubiquitin ligases. Trends Cell Biol 13: 285–287; author reply 287–288.

    Article  CAS  PubMed  Google Scholar 

  • Sebastian S, Sreenivas P, Sambasivan R, Cheedipudi S, Kandalla P, Pavlath GK et al. (2009). MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation. Proc Natl Acad Sci USA 106: 4719–4724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shao RG, Cao CX, Zhang H, Kohn KW, Wold MS, Pommier Y . (1999). Replication-mediated DNA damage by camptothecin induces phosphorylation of RPA by DNA-dependent protein kinase and dissociates RPA:DNA-PK complexes. EMBO J 18: 1397–1406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Staker BL, Hjerrild K, Feese MD, Behnke CA, Burgin Jr AB, Stewart L . (2002). The mechanism of topoisomerase I poisoning by a camptothecin analog. Proc Natl Acad Sci USA 99: 15387–15392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tibbetts RS, Brumbaugh KM, Williams JM, Sarkaria JN, Cliby WA, Shieh SY et al. (1999). A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13: 152–157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westerfield M . (2000). The Zebrafish Book. A Guide for the Laboratory Use of Zebrafish (Danio rerio), 4th edn. Univ. of Oregon Press: Eugene.

    Google Scholar 

  • Wysocka J, Swigut T, Milne TA, Dou Y, Zhang X, Burlingame AL et al. (2005). WDR5 associates with histone H3 methylated at K4 and is essential for H3 K4 methylation and vertebrate development. Cell 121: 859–872.

    Article  CAS  PubMed  Google Scholar 

  • Xiao Z, Chen Z, Gunasekera AH, Sowin TJ, Rosenberg SH, Fesik S et al. (2003). Chk1 mediates S and G2 arrests through Cdc25A degradation in response to DNA-damaging agents. J Biol Chem 278: 21767–21773.

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I et al. (2004). Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 24: 5639–5649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Traganos F, Darzynkiewicz Z . (2008). Phosphorylation of p53 on Ser15 during cell cycle caused by Topo I and Topo II inhibitors in relation to ATM and Chk2 activation. Cell Cycle 7: 3048–3055.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Thilo Hagen and Dr Qiang Yu for their valuable suggestions. We thank Dr Bert Vogelstein for HCT116 p53+/+ and HCT116 p53−/− cells and Dr Victor Yu for pXJ-HA-p53 plasmid. This work was supported in part by BMRC-A*STAR, R-183-000-164-305; NMRC-A*STAR, R-183-000-220-275; and Ministry of Education Academic Research Fund Tier2, R-183-000-195-112 to LWD, and A*STAR-IMCB funding to YJJ and VK Both FC and JL are recipients of research scholarships from Ministry of Education, Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L-W Deng.

Ethics declarations

Competing interests

The authors declare no conflicts of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, F., Liu, J., Teh, C. et al. Camptothecin-induced downregulation of MLL5 contributes to the activation of tumor suppressor p53. Oncogene 30, 3599–3611 (2011). https://doi.org/10.1038/onc.2011.71

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.71

Keywords

This article is cited by

Search

Quick links