Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

NF-κB-dependent cytokine secretion controls Fas expression on chemotherapy-induced premature senescent tumor cells

Abstract

Induction of a senescent phenotype in tumor cells has been linked to anticancer immune response, however, the molecular mechanisms mediating these phenomenon have not yet been determined. In this study, we present evidence that induction of premature senescence in human cancer cell lines induces Fas expression, and loss of resistance to Fas-induced apoptosis. Triggering of Fas by using the agonistic antibody CH11 or the recombinant ligand APO010, activates an apoptotic pathway responsible for cell death. Secretion of pro-inflammatory cytokines by the senescent cells, particularly TNF-α and IFN-γ, mediates Fas upregulation. Indeed, treatment of proliferating cancer cell lines with TNF-α and IFN-γ, upregulates Fas expression, while blocking TNF-α and IFN-γ by using neutralizing antibodies, decreases Fas expression in senescent cells. We also demonstrate that NF-κB has a central role in controlling the senescence-associated secretory phenotype (SASP) by the premature senescent cells, and that TNF-α and IFN-γ, transcriptionally controlled by NF-κB, are the main mediators of Fas upregulation. Our data suggest the existence of an NF-κB-dependent autocrine loop, mediated by TNF-α and IFN-γ, responsible for expression of Fas on the surface of senescent cells, and for their killing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Acosta JC, O'Loghlen A, Banito A, Guijarro MV, Augert A, Raguz S et al. (2008). Chemokine signaling via the CXCR2 receptor reinforces senescence. Cell 133: 1006–1018.

    Article  CAS  Google Scholar 

  • Adler AS, Sinha S, Kawahara TL, Zhang JY, Segal E, Chang HY . (2007). Motif module map reveals enforcement of aging by continual NF-kappaB activity. Genes Dev 21: 3244–3257.

    Article  CAS  Google Scholar 

  • Bartek J, Bartkova J, Lukas J . (2007). DNA damage signalling guards against activated oncogenes and tumour progression. Oncogene 26: 7773–7779.

    Article  CAS  Google Scholar 

  • Braig M, Schmitt CA . (2006). Oncogene-induced senescence: putting the brakes on tumor development. Cancer Res 66: 2881–2884.

    Article  CAS  Google Scholar 

  • Chang BD, Broude EV, Dokmanovic M, Zhu H, Ruth A, Xuan Y et al. (1999). A senescence-like phenotype distinguishes tumor cells that undergo terminal proliferation arrest after exposure to anticancer agents. Cancer Res 59: 3761–3767.

    CAS  PubMed  Google Scholar 

  • Coppé JP, Desprez PY, Krtolica A, Campisi J . (2010). The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol 5: 99–118.

    Article  Google Scholar 

  • Coppé JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J et al. (2008). Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLos Biol 6: 2853–2868.

    Article  Google Scholar 

  • Crescenzi E, Palumbo G, de Boer J, Brady HJ . (2008). ATM and p21CIP1 modulate cell survival of drug-induced senescent tumor cells: implications for chemotherapy. Clin Cancer Res 14: 1877–1887.

    Article  CAS  Google Scholar 

  • Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C et al. (1995). A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci USA 92: 9363–9367.

    Article  CAS  Google Scholar 

  • Fluhr H, Krenzer S, Stein GM, Stork B, Deperschmidt M, Wallwiener D et al. (2007). Interferon-gamma and tumor necrosis factor-alpha sensitize primarily resistant human endometrial stromal cells to Fas-mediated apoptosis. J Cell Sci 120: 4126–4133.

    Article  CAS  Google Scholar 

  • Freund A, Orjalo AV, Desprez PY, Campisi J . (2010). Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med 16: 238–246.

    Article  CAS  Google Scholar 

  • Gasser S, Raulet DH . (2006). The DNA damage response arouses the immune system. Cancer Res 66: 3959–3962.

    Article  CAS  Google Scholar 

  • Häcker H, Karin M . (2006). Regulation and function of IKK and IKK-related kinases. Sci STKE 2006: re13.

    Article  Google Scholar 

  • Hayflick L, Moorhead PS . (1961). The serial cultivation of human diploid cell strains. Exp Cell Res 25: 585–621.

    Article  CAS  Google Scholar 

  • Houston A, O'Connell J . (2004). The Fas signalling pathway and its role in the pathogenesis of cancer. Curr Opin Pharmacol 4: 321–326.

    Article  CAS  Google Scholar 

  • Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S . (2003). Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell 115: 565–576.

    Article  CAS  Google Scholar 

  • Kimura M, Haisa M, Uetsuka H, Takaoka M, Ohkawa T, Kawashima R et al. (2003). TNF combined with IFN-alpha accelerates NF-kappaB-mediated apoptosis through enhancement of Fas expression in colon cancer cells. Cell Death Differ 10: 718–728.

    Article  CAS  Google Scholar 

  • Krizhanovsky V, Yon M, Dickins RA, Hearn S, Simon J, Miething C et al. (2008). Senescence of activated stellate cells limits liver fibrosis. Cell 134: 657–667.

    Article  CAS  Google Scholar 

  • Kühnel F, Zender L, Paul Y, Tietze MK, Trautwein C, Manns M et al. (2000). NFkappaB mediates apoptosis through transcriptional activation of Fas (CD95) in adenoviral hepatitis. J Biol Chem 275: 6421–6427.

    Article  Google Scholar 

  • Kuilman T, Michaloglou C, Vredeveld LC, Douma S, van Doorn R, Desmet CJ et al. (2008). Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133: 1019–1031.

    Article  CAS  Google Scholar 

  • Mirzayans R, Scott A, Cameron M, Murray D . (2005). Induction of accelerated senescence by gamma radiation in human solid tumor-derived cell lines expressing wild-type TP53. Radiat Res 163: 53–62.

    Article  CAS  Google Scholar 

  • Naumann M, Nieters A, Hatada EN, Scheidereit C . (1993). NF-kappa B precursor p100 inhibits nuclear translocation and DNA binding of NF-kappa B/rel-factors. Oncogene 8: 2275–2281.

    CAS  PubMed  Google Scholar 

  • Neumann L, Pforr C, Beaudouin J, Pappa A, Fricker N, Krammer PH et al. (2010). Dynamics within the CD95 death-inducing signaling complex decide life and death of cells. Mol Syst Biol 6: 352.

    Article  Google Scholar 

  • Orjalo AV, Bhaumik D, Gengler BK, Scott GK, Campisi J . (2009). Cell surface-bound IL-1alpha is an upstream regulator of the senescence-associated IL-6/IL-8 cytokine network. Proc Natl Acad Sci USA 106: 17031–17036.

    Article  CAS  Google Scholar 

  • Ouaaz F, Li M, Beg AA . (1999). A critical role for the RelA subunit of nuclear factor kappaB in regulation of multiple immune-response genes and in Fas-induced cell death. J Exp Med 189: 999–1004.

    Article  CAS  Google Scholar 

  • Raulet DH, Guerra N . (2009). Oncogenic stress sensed by the immune system: role of natural killer cell receptors. Nat Rev Immunol 9: 568–580.

    Article  CAS  Google Scholar 

  • Russo M, Mupo A, Spagnuolo C, Russo GL . (2010). Exploring death receptor pathways as selective targets in cancer therapy. Biochem Pharmacol 80: 674–682.

    Article  CAS  Google Scholar 

  • Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM et al. (2002). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109: 335–346.

    Article  CAS  Google Scholar 

  • Soriani A, Zingoni A, Cerboni C, Iannitto ML, Ricciardi MR, Di Gialleonardo V et al. (2009). ATM-ATR-dependent up-regulation of DNAM-1 and NKG2D ligands on multiple myeloma cells by therapeutic agents results in enhanced NK-cell susceptibility and is associated with a senescent phenotype. Blood 113: 3503–3511.

    Article  CAS  Google Scholar 

  • te Poele RH, Okorokov AL, Jardine L, Cummings J, Joel SP . (2002). DNA damage is able to induce senescence in tumor cells in vitro and in vivo. Cancer Res 62: 1876–1883.

    CAS  PubMed  Google Scholar 

  • Vallabhapurapu S, Karin M . (2009). Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol 27: 693–733.

    Article  CAS  Google Scholar 

  • Ventura A, Kirsch DG, McLaughlin ME, Tuveson DA, Grimm J, Lintault L et al. (2007). Restoration of p53 function leads to tumour regression in vivo. Nature 445: 661–665.

    Article  CAS  Google Scholar 

  • Verbrugge I, Wissink EH, Rooswinkel RW, Jongsma J, Beltraminelli N, Dupuis M et al. (2009). Combining radiotherapy with APO010 in cancer treatment. Clin Cancer Res 15: 2031–2038.

    Article  CAS  Google Scholar 

  • Wajapeyee N, Serra RW, Zhu X, Mahalingam M, Green MR . (2008). Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell 133: 1006–1018.

    Article  Google Scholar 

  • Wang Y, Blandino G, Givol D . (1999). Induced p21waf expression in H1299 cell line promotes cell senescence and protects against cytotoxic effect of radiation and doxorubicin. Oncogene 18: 2643–2649.

    Article  CAS  Google Scholar 

  • Wang Y, Blandino G, Oren M, Givol D . (1998). Induced p53 expression in lung cancer cell line promotes cell senescence and differentially modifies the cytotoxicity of anti-cancer drugs. Oncogene 17: 1923–1930.

    Article  CAS  Google Scholar 

  • Wang J, Jacob NK, Ladner KJ, Beg A, Perko JD, Tanner SM et al. (2009). RelA/p65 functions to maintain cellular senescence by regulating genomic stability and DNA repair. EMBO Rep 10: 1272–1278.

    Article  CAS  Google Scholar 

  • Xue W, Zender L, Miething C, Dickins RA, Hernando E, Krizhanovsky V et al. (2007). Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445: 656–660.

    Article  CAS  Google Scholar 

  • Young AR, Narita M . (2009). SASP reflects senescence. EMBO Rep 10: 228–230.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support: MIUR #2008CCPKRP to AL; MIUR #2007WJZZR2 to GP

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Leonardi.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Crescenzi, E., Pacifico, F., Lavorgna, A. et al. NF-κB-dependent cytokine secretion controls Fas expression on chemotherapy-induced premature senescent tumor cells. Oncogene 30, 2707–2717 (2011). https://doi.org/10.1038/onc.2011.1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2011.1

Keywords

This article is cited by

Search

Quick links