Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Regulation of transcription of hypoxia-inducible factor-1α (HIF-1α) by heat shock factors HSF2 and HSF4

Abstract

Hypoxia-inducible factor-1α (HIF-1α) is a principal regulator of angiogenesis and other cellular responses to hypoxic stress in both normal and tumor cells. To identify novel mechanisms that regulate expression of HIF-1α, we designed a genome-wide screen for expressed sequence tags (ESTs) that when transcribed in the antisense direction increase production of the HIF-1α target, vascular endothelial growth factor (VEGF), in human breast cancer cells. We discovered that heat shock factor (HSF) proteins 2 and 4—which previously have been implicated in the control of multiple genes that modulate cell growth and differentiation and protect against effects of environmental and cellular stresses—function together to maintain a steady state level of HIF-1α transcription and VEGF production in these cells. We show both HSFs bind to discontinuous heat shock element (HSE) sequences we identified in the HIF-1α promoter region and that downregulation of either HSF activates transcription of HIF-1α. We further demonstrate that HSF2 and HSF4 displace each other from HSF/HSE complexes in the HIF-1α promoter so that HIF-1α transcription is also activated by overexpression of either HSFs. These results argue that HSF2 and HSF4 regulate transcription of HIF-1α and that a critical balance between these HSF is required to maintain HIF-α expression in a repressed state. Our findings reveal a previously unsuspected role for HSFs in control of VEGF and other genes activated by canonical HIF-1α-mediated signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Akerfelt M, Henriksson E, Laiho A, Vihervaara A, Rautoma K, Kotaja N et al. (2008). Promoter ChIP-chip analysis in mouse testis reveals Y chromosome occupancy by HSF2. Proc Natl Acad Sci USA 105: 11224–11229.

    Article  CAS  Google Scholar 

  • Akerfelt M, Trouillet D, Mezger V, Sistonen L . (2007). Heat shock factors at a crossroad between stress and development. Ann NY Acad Sci 1113: 15–27.

    Article  CAS  Google Scholar 

  • Bos R, Zhong H, Hanrahan CF, Mommers EC, Semenza GL, Pinedo HM et al. (2001). Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J Natl Cancer Inst 93: 309–314.

    Article  CAS  Google Scholar 

  • Brahimi-Horn MC, Pouyssegur J . (2007). Harnessing the hypoxia-inducible factor in cancer and ischemic disease. Biochem Pharmacol 73: 450–457.

    Article  CAS  Google Scholar 

  • Busca R, Berra E, Gaggioli C, Khaled M, Bille K, Marchetti B et al. (2005). Hypoxia-inducible factor 1{alpha} is a new target of microphthalmia-. J Cell Biol 170: 49–59.

    Article  CAS  Google Scholar 

  • Chang Y, Ostling P, Akerfelt M, Trouillet D, Rallu M, Gitton Y et al. (2006). Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression. Genes Dev 20: 836–847.

    Article  CAS  Google Scholar 

  • Chi NC, Karliner JS . (2004). Molecular determinants of responses to myocardial ischemia/reperfusion injury: focus on hypoxia-inducible and heat shock factors. Cardiovasc Res 61: 437–447.

    Article  CAS  Google Scholar 

  • Fraisl P, Mazzone M, Schmidt T, Carmeliet P . (2009). Regulation of angiogenesis by oxygen and metabolism. Dev Cell 16: 167–179.

    Article  CAS  Google Scholar 

  • Fujimoto M, Izu H, Seki K, Fukuda K, Nishida T, Yamada S et al. (2004). HSF4 is required for normal cell growth and differentiation during mouse lens development. EMBO J 23: 4297–4306.

    Article  CAS  Google Scholar 

  • Fujimoto M, Oshima K, Shinkawa T, Wang BB, Inouye S, Hayashida N et al. (2008). Analysis of HSF4 binding regions reveals its necessity for gene regulation during development and heat shock response in mouse lenses. J Biol Chem 283: 29961–29970.

    Article  CAS  Google Scholar 

  • Fujimoto M, Nakai A . (2010). The heat shock factor family and adaptation to proteotoxic stress. FEBS J 277: 4112–4125.

    Article  CAS  Google Scholar 

  • Fukumura D, Xavier R, Sugiura T, Chen Y, Park EC, Lu N et al. (1998). Tumor induction of VEGF promoter activity in stromal cells. Cell 94: 715–725.

    Article  CAS  Google Scholar 

  • Isaacs JS, Jung YJ, Mimnaugh EG, Martinez A, Cuttitta F, Neckers LM . (2002). Hsp90 regulates a von Hippel Lindau-independent hypoxia-inducible factor-1 alpha-degradative pathway. J Biol Chem 277: 29936–29944.

    Article  CAS  Google Scholar 

  • Jiang BH, Agani F, Passaniti A, Semenza GL . (1997). V-SRC induces expression of hypoxia-inducible factor 1 (HIF-1) and transcription of genes encoding vascular endothelial growth factor and enolase 1: involvement of HIF-1 in tumor progression. Cancer Res 57: 5328–5335.

    CAS  Google Scholar 

  • Loison F, Debure L, Nizard P, le Goff P, Michel D, le Drean Y . (2006). Up-regulation of the clusterin gene after proteotoxic stress: implication of HSF1-HSF2 heterocomplexes. Biochem J 395: 223–231.

    Article  CAS  Google Scholar 

  • Lu Q, Wei W, Kowalski PE, Chang AC, Cohen SN . (2004). EST-based genome-wide gene inactivation identifies ARAP3 as a host protein affecting cellular susceptibility to anthrax toxin. Proc Natl Acad Sci USA 101: 17246–17251.

    Article  CAS  Google Scholar 

  • Mathew A, Mathur SK, Jolly C, Fox SG, Kim S, Morimoto RI . (2001). Stress-specific activation and repression of heat shock factors 1 and 2. Mol Cell Biol 21: 7163–7171.

    Article  CAS  Google Scholar 

  • Mazure NM, Chen EY, Laderoute KR, Giaccia AJ . (1997). Induction of vascular endothelial growth factor by hypoxia is modulated by a phosphatidylinositol 3-kinase/Akt signaling pathway in Ha-ras-transformed cells through a hypoxia inducible factor-1 transcriptional element. Blood 90: 3322–3331.

    CAS  PubMed  Google Scholar 

  • Mazure NM, Chen EY, Laderoute KR, Giaccia AJ . (1996). Oncogenic transformation and hypoxia synergistically act to modulate vascular endothelial growth factor expression. Cancer Res 56: 3436–3440.

    CAS  PubMed  Google Scholar 

  • Min JN, Zhang Y, Moskophidis D, Mivechi NF . (2004). Unique contribution of heat shock transcription factor 4 in ocular lens development and fiber cell differentiation. Genesis 40: 205–217.

    Article  CAS  Google Scholar 

  • Minet E, Mottet D, Michel G, Roland I, Raes M, Remacle J et al. (1999). Hypoxia-induced activation of HIF-1: role of HIF-1alpha-Hsp90 interaction. FEBS Lett 460: 251–256.

    Article  CAS  Google Scholar 

  • Morimoto RI . (2008). Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev 22: 1427–1438.

    Article  CAS  Google Scholar 

  • Murphy LA, Wilkerson DC, Hong Y, Sarge KD . (2008). PRC1 associates with the hsp70i promoter and interacts with HSF2 during mitosis. Exp Cell Res 314: 2224–2230.

    Article  CAS  Google Scholar 

  • Nakai A, Tanabe M, Kawazoe Y, Inazawa J, Morimoto RI, Nagata K . (1997). HSF4, a new member of the human heat shock factor family which lacks properties of a transcriptional activator. Mol Cell Biol 17: 469–481.

    Article  CAS  Google Scholar 

  • Nardinocchi L, Puca R, Guidolin D, Belloni AS, Bossi G, Michiels C et al. (2009). Transcriptional regulation of hypoxia-inducible factor 1alpha by HIPK2 suggests a novel mechanism to restrain tumor growth. Biochim Biophys Acta 1793: 368–377.

    Article  CAS  Google Scholar 

  • Ng YS, Krilleke D, Shima DT . (2006). VEGF function in vascular pathogenesis. Exp Cell Res 312: 527–537.

    Article  CAS  Google Scholar 

  • Olenyuk BZ, Zhang GJ, Klco JM, Nickols NG, Kaelin WG, Dervan PB . (2004). Inhibition of vascular endothelial growth factor with a sequence-specific hypoxia response element antagonist. Proc Natl Acad Sci USA 101: 16768–16773.

    Article  CAS  Google Scholar 

  • Ostling P, Bjork JK, Roos-Mattjus P, Mezger V, Sistonen L . (2007). Heat shock factor 2 (HSF2) contributes to inducible expression of hsp genes through interplay with HSF1. J Biol Chem 282: 7077–7086.

    Article  Google Scholar 

  • Page EL, Robitaille GA, Pouyssegur J, Richard DE . (2002). Induction of hypoxia-inducible factor-1alpha by transcriptional and translational mechanisms. J Biol Chem 277: 48403–48409.

    Article  CAS  Google Scholar 

  • Pipinikas CP, Carter ND, Corbishley CM, Fenske CD . (2008). HIF-1alpha mRNA gene expression levels in improved diagnosis of early stages of prostate cancer. Biomarkers 13: 680–691.

    Article  CAS  Google Scholar 

  • Pirkkala L, Nykanen P, Sistonen L . (2001). Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15: 1118–1131.

    Article  CAS  Google Scholar 

  • Pore N, Liu S, Shu HK, Li B, Haas-Kogan D, Stokoe D et al. (2004). Sp1 is involved in Akt-mediated induction of VEGF expression through an HIF-1-independent mechanism. Mol Biol Cell 15: 4841–4853.

    Article  CAS  Google Scholar 

  • Pouyssegur J, Dayan F, Mazure NM . (2006). Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441: 437–443.

    Article  CAS  Google Scholar 

  • Sandqvist A, Bjork JK, Akerfelt M, Chitikova Z, Grichine A, Vourc'h C et al. (2009). Heterotrimerization of heat-shock factors 1 and 2 provides a transcriptional switch in response to distinct stimuli. Mol Biol Cell 20: 1340–1347.

    Article  CAS  Google Scholar 

  • Schafer C, Clapp P, Welsh MJ, Benndorf R, Williams JA . (1999). HSP27 expression regulates CCK-induced changes of the actin cytoskeleton in CHO-CCK-A cells. Am J Physiol 277: C1032–C1043.

    Article  CAS  Google Scholar 

  • Semenza GL . (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721–732.

    Article  CAS  Google Scholar 

  • Somasundaram T, Bhat SP . (2004). Developmentally dictated expression of heat shock factors: exclusive expression of HSF4 in the postnatal lens and its specific interaction with alphaB-crystallin heat shock promoter. J Biol Chem 279: 44497–44503.

    Article  CAS  Google Scholar 

  • Tsuzuki Y, Fukumura D, Oosthuyse B, Koike C, Carmeliet P, Jain RK . (2000). Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia-inducible factor-1alpha--> hypoxia response element--> VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res 60: 6248–6252.

    CAS  PubMed  Google Scholar 

  • Wartenberg M, Donmez F, Ling FC, Acker H, Hescheler J, Sauer H . (2001). Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells. FASEB J 15: 995–1005.

    Article  CAS  Google Scholar 

  • Xing H, Wilkerson DC, Mayhew CN, Lubert EJ, Skaggs HS, Goodson ML et al. (2005). Mechanism of hsp70i gene bookmarking. Science 307: 421–423.

    Article  CAS  Google Scholar 

  • Yamamoto N, Takemori Y, Sakurai M, Sugiyama K, Sakurai H . (2009). Differential recognition of heat shock elements by members of the heat shock transcription factor family. FEBS J 276: 1962–1974.

    Article  CAS  Google Scholar 

  • Zhang J, Goodson ML, Hong Y, Sarge KD . (2008). MEL-18 interacts with HSF2 and the SUMO E2 UBC9 to inhibit HSF2 sumoylation. J Biol Chem 283: 7464–7469.

    Article  CAS  Google Scholar 

  • Zhang Y, Frejtag W, Dai R, Mivechi NF . (2001). Heat shock factor-4 (HSF-4a) is a repressor of HSF-1 mediated transcription. J Cell Biochem 82: 692–703.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The study was supported by funds from the Kwoh-Ting Li Professorship to SNC, and by a grant from the National Foundation for Cancer Research (NFCR) to SNC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S N Cohen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, R., Liliental, J., Kowalski, P. et al. Regulation of transcription of hypoxia-inducible factor-1α (HIF-1α) by heat shock factors HSF2 and HSF4. Oncogene 30, 2570–2580 (2011). https://doi.org/10.1038/onc.2010.623

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.623

Keywords

This article is cited by

Search

Quick links