Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

TGF-β-induced IRAK-M expression in tumor-associated macrophages regulates lung tumor growth

Abstract

Tumor-associated macrophages (TAMs) constitute a major component of the immune cell infiltrate observed in the tumor microenvironment (TME). Factors present in the TME, including tumor growth factor-β (TGF-β), allow tumors to circumvent host-mediated immune responses to promote tumor progression. However, the molecular mechanism(s) involved are not clear. Toll-like receptors (TLRs) are important mediators of innate immune responses by immune cells, whose activation triggers the production of molecules required for anti-tumoral responses. Interleukin (IL) receptor-associated kinase (IRAK)-M is an inactive serine/threonine kinase, predominantly expressed in macrophages and is a potent negative regulator of TLR signaling. In this study, we show that TAMs express significantly higher levels of IRAK-M compared with peritoneal macrophages in a syngeneic mouse model of lung cancer. Subcutaneous implantation of Lewis lung carcinoma cells in IRAK-M−/− mice resulted in a five-fold reduction in tumor growth as compared with tumors in wild-type (WT) animals. Furthermore, compared with WT TAMs, TAMs isolated from IRAK-M−/− mice displayed features of a classically activated (M1) rather than alternatively activated (M2) phenotype, as manifest by greater expression of IL-12, interferon-γ (IFN-γ) and inducible nitric oxide synthase. Human lung cancer cells induced IRAK-M expression in human peripheral blood mononuclear cells (PBMCs) when co-cultured together. Tumor cell-induced expression of IRAK-M was dependent on the activation of TGF-β pathway. Similarly, treatment of human PBMCs or mouse macrophage cell line, RAW 264.4, with TGF-β, induced IRAK-M expression. Interestingly, IRAK-M gene expression in 439 human lung adenocarcinoma tumors correlated with poor survival in patients with lung cancer. Together, our data demonstrates that TGF-β-dependent induction of IRAK-M expression is an important, clinically relevant mechanism by which tumors may circumvent anti-tumor responses of macrophages.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Akira S, Takeda K . (2004). Toll-like receptor signalling. Nat Rev Immunol 4: 499–511.

    Article  CAS  Google Scholar 

  • Akira S, Takeda K, Kaisho T . (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2: 675–680.

    Article  CAS  Google Scholar 

  • Balkwill F, Charles KA, Mantovani A . (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 7: 211–217.

    Article  CAS  Google Scholar 

  • Ben-Baruch A . (2006). Inflammation-associated immune suppression in cancer: the roles played by cytokines, chemokines and additional mediators. Semin Cancer Biol 16: 38–52.

    Article  CAS  Google Scholar 

  • Bingle L, Brown NJ, Lewis CE . (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196: 254–265.

    Article  CAS  Google Scholar 

  • de Vos AF, Pater JM, van den Pangaart PS, de Kruif MD, van ‘t Veer C, van der Poll T . (2009). In vivo lipopolysaccharide exposure of human blood leukocytes induces cross-tolerance to multiple TLR ligands. J Immunol 183: 533–542.

    Article  CAS  Google Scholar 

  • del Fresno C, Otero K, Gomez-Garcia L, Gonzalez-Leon MC, Soler-Ranger L, Fuentes-Prior P et al. (2005). Tumor cells deactivate human monocytes by up-regulating IL-1 receptor associated kinase-M expression via CD44 and TLR4. J Immunol 174: 3032–3040.

    Article  CAS  Google Scholar 

  • Deng JC, Cheng G, Newstead MW, Zeng X, Kobayashi K, Flavell RA et al. (2006). Sepsis-induced suppression of lung innate immunity is mediated by IRAK-M. J Clin Invest 116: 2532–2542.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edwards BK, Brown ML, Wingo PA, Howe HL, Ward E, Ries LA et al. (2005). Annual report to the nation on the status of cancer, 1975–2002, featuring population-based trends in cancer treatment. J Natl Cancer Inst 97: 1407–1427.

    Article  Google Scholar 

  • Elgert KD, Alleva DG, Mullins DW . (1998). Tumor-induced immune dysfunction: the macrophage connection. J Leukoc Biol 64: 275–290.

    Article  CAS  Google Scholar 

  • Elliott RL, Blobe GC . (2005). Role of transforming growth factor Beta in human cancer. J Clin Oncol 23: 2078–2093.

    Article  CAS  Google Scholar 

  • Gordon S . (2003). Alternative activation of macrophages. Nat Rev Immunol 3: 23–35.

    Article  CAS  Google Scholar 

  • Hasegawa Y, Takanashi S, Kanehira Y, Tsushima T, Imai T, Okumura K . (2001). Transforming growth factor-beta1 level correlates with angiogenesis, tumor progression, and prognosis in patients with nonsmall cell lung carcinoma. Cancer 91: 964–971.

    Article  CAS  Google Scholar 

  • Jacobsen SE, Keller JR, Ruscetti FW, Kondaiah P, Roberts AB, Falk LA . (1991). Bidirectional effects of transforming growth factor beta (TGF-beta) on colony-stimulating factor-induced human myelopoiesis in vitro: differential effects of distinct TGF-beta isoforms. Blood 78: 2239–2247.

    CAS  PubMed  Google Scholar 

  • Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A et al. (2005). Cancer statistics, 2005. CA Cancer J Clin 55: 10–30.

    Article  Google Scholar 

  • Johnson SK, Kerr KM, Chapman AD, Kennedy MM, King G, Cockburn JS et al. (2000). Immune cell infiltrates and prognosis in primary carcinoma of the lung. Lung Cancer 27: 27–35.

    Article  CAS  Google Scholar 

  • Kim WS, Park C, Jung YS, Kim HS, Han J, Park CH et al. (1999). Reduced transforming growth factor-beta type II receptor (TGF-beta RII) expression in adenocarcinoma of the lung. Anticancer Res 19: 301–306.

    CAS  PubMed  Google Scholar 

  • Kobayashi K, Hernandez LD, Galan JE, Janeway Jr CA, Medzhitov R, Flavell RA . (2002). IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110: 191–202.

    Article  CAS  Google Scholar 

  • Kong F, Jirtle RL, Huang DH, Clough RW, Anscher MS . (1999). Plasma transforming growth factor-beta1 level before radiotherapy correlates with long term outcome of patients with lung carcinoma. Cancer 86: 1712–1719.

    Article  CAS  Google Scholar 

  • Letterio JJ, Roberts AB . (1998). Regulation of immune responses by TGF-beta. Annu Rev Immunol 16: 137–161.

    Article  CAS  Google Scholar 

  • Lewis CE, Pollard JW . (2006). Distinct role of macrophages in different tumor microenvironments. Cancer Res 66: 605–612.

    Article  CAS  Google Scholar 

  • Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA . (2006). Transforming growth factor-beta regulation of immune responses. Annu Rev Immunol 24: 99–146.

    Article  CAS  Google Scholar 

  • Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L . (1992). The origin and function of tumor-associated macrophages. Immunol Today 13: 265–270.

    Article  CAS  Google Scholar 

  • Mantovani A, Sozzani S, Locati M, Allavena P, Sica A . (2002). Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23: 549–555.

    Article  CAS  Google Scholar 

  • McCartney-Francis N, Jin W, Wahl SM . (2004). Aberrant Toll receptor expression and endotoxin hypersensitivity in mice lacking a functional TGF-beta 1 signaling pathway. J Immunol 172: 3814–3821.

    Article  CAS  Google Scholar 

  • Moustakas A, Heldin CH . (2003). Ecsit-ement on the crossroads of Toll and BMP signal transduction. Genes Dev 17: 2855–2859.

    Article  CAS  Google Scholar 

  • Mytar B, Woloszyn M, Szatanek R, Baj-Krzyworzeka M, Siedlar M, Ruggiero I et al. (2003). Tumor cell-induced deactivation of human monocytes. J Leukoc Biol 74: 1094–1101.

    Article  CAS  Google Scholar 

  • Naiki Y, Michelsen KS, Zhang W, Chen S, Doherty TM, Arditi M . (2005). Transforming growth factor-beta differentially inhibits MyD88-dependent, but not TRAM- and TRIF-dependent, lipopolysaccharide-induced TLR4 signaling. J Biol Chem 280: 5491–5495.

    Article  CAS  Google Scholar 

  • Pan H, Ding E, Hu M, Lagoo AS, Datto MB, Lagoo-Deenadayalan SA . (2010). SMAD4 is required for development of maximal endotoxin tolerance. J Immunol 184: 5502–5509.

    Article  CAS  Google Scholar 

  • Pardoll D . (2003). Does the immune system see tumors as foreign or self? Annu Rev Immunol 21: 807–839.

    Article  CAS  Google Scholar 

  • Pollard JW . (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4: 71–78.

    Article  CAS  Google Scholar 

  • Reddy RC, Keshamouni VG, Jaigirdar SH, Zeng X, Leff T, Thannickal VJ et al. (2004). Deactivation of murine alveolar macrophages by peroxisome proliferator-activated receptor-gamma ligands. Am J Physiol Lung Cell Mol Physiol 286: L613–L619.

    Article  CAS  Google Scholar 

  • Rosati O, Martin MU . (2002). Identification and characterization of murine IRAK-M. Biochem Biophys Res Commun 293: 1472–1477.

    Article  CAS  Google Scholar 

  • Scagliotti G, Novello S . (2003). Adjuvant chemotherapy after complete resection for early stage NSCLC. Lung Cancer 42 (Suppl 1): S47–S51.

    Article  Google Scholar 

  • Schnare M, Barton GM, Holt AC, Takeda K, Akira S, Medzhitov R . (2001). Toll-like receptors control activation of adaptive immune responses. Nat Immunol 2: 947–950.

    Article  CAS  Google Scholar 

  • Seya T, Akazawa T, Uehori J, Matsumoto M, Azuma I, Toyoshima K . (2003). Role of toll-like receptors and their adaptors in adjuvant immunotherapy for cancer. Anticancer Res 23: 4369–4376.

    CAS  PubMed  Google Scholar 

  • Shedden K, Taylor JM, Enkemann SA, Tsao MS, Yeatman TJ, Gerald WL et al. (2008). Gene expression-based survival prediction in lung adenocarcinoma: a multi-site, blinded validation study. Nat Med 14: 822–827.

    Article  CAS  Google Scholar 

  • Souquet PJ, Geriniere L . (2001). The role of chemotherapy in early stage of non-small cell lung cancer. Lung Cancer 34 (Suppl 2): S155–S158.

    Article  Google Scholar 

  • Toonkel RL, Borczuk AC, Powell CA . (2010). TGF-beta signaling pathway in lung adenocarcinoma invasion. J Thorac Oncol 5: 153–157.

    Article  Google Scholar 

  • van ‘t Veer C, van den Pangaart PS, van Zoelen MA, de Kruif M, Birjmohun RS, Stroes ES et al. (2007). Induction of IRAK-M is associated with lipopolysaccharide tolerance in a human endotoxemia model. J Immunol 179: 7110–7120.

    Article  Google Scholar 

  • Wesche H, Gao X, Li X, Kirschning CJ, Stark GR, Cao Z . (1999). IRAK-M is a novel member of the Pelle/interleukin-1 receptor-associated kinase (IRAK) family. J Biol Chem 274: 19403–19410.

    Article  CAS  Google Scholar 

  • Xiao C, Shim JH, Kluppel M, Zhang SS, Dong C, Flavell RA et al. (2003). Ecsit is required for Bmp signaling and mesoderm formation during mouse embryogenesis. Genes Dev 17: 2933–2949.

    Article  CAS  Google Scholar 

  • Xie Q, Gan L, Wang J, Wilson I, Li L . (2007). Loss of the innate immunity negative regulator IRAK-M leads to enhanced host immune defense against tumor growth. Mol Immunol 44: 3453–3461.

    Article  CAS  Google Scholar 

  • Yamaguchi H, Pixley F, Condeelis J . (2006). Invadopodia and podosomes in tumor invasion. Eur J Cell Biol 85: 213–218.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is funded by the NIH/NCI (R01 CA132571-01), and the American Cancer Society (RSG-CSM-116801) grants to VGK, and NIH/NHLBI HL25243 and HL097564 to TJS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V G Keshamouni.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Standiford, T., Kuick, R., Bhan, U. et al. TGF-β-induced IRAK-M expression in tumor-associated macrophages regulates lung tumor growth. Oncogene 30, 2475–2484 (2011). https://doi.org/10.1038/onc.2010.619

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.619

Keywords

This article is cited by

Search

Quick links