Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1

Abstract

MicroRNAs (miRNAs) are involved in tumorigenecity by regulating specific oncogenes and tumor suppressor genes, and their roles in breast cancer stem cells (BCSCs) are becoming apparent. Distinct from the CD44+/CD24−/low sub-population, we have isolated a novel PROCR+/ESA+ BCSC sub-population. To explore miRNA-regulatory mechanisms in this sub-population, we performed miRNA expression profiling and found miR-495 as the most highly upegulated miRNA in PROCR+/ESA+ cells. Coincidently, high upregulation of miR-495 was also found in CD44+/CD24−/low BCSCs, reflecting its potential importance in maintaining common BCSC properties. Ectopic expression of miR-495 in breast cancer cells promoted their colony formation in vitro and tumorigenesis in mice. miR-495 directly suppressed E-cadherin expression to promote cell invasion and inhibited REDD1 expression to enhance cell proliferation in hypoxia through post-transcriptional mechanism. miR-495 expression was directly modulated by transcription factor E12/E47, which itself is highly expressed in BCSCs. These findings reveal a novel regulatory pathway centered on miR-495 that contributes to BCSC properties and hypoxia resistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF . (2003). Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100: 3983–3988.

    Article  CAS  Google Scholar 

  • Bartel DP . (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281–297.

    Article  CAS  Google Scholar 

  • Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E et al. (2004). Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18: 2893–2904.

    Article  CAS  Google Scholar 

  • Calin GA, Croce CM . (2006). MicroRNA signatures in human cancers. Nat Rev Cancer 6: 857–866.

    Article  CAS  Google Scholar 

  • Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ et al. (2006). HIF-2alpha regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20: 557–570.

    Article  CAS  Google Scholar 

  • DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW . (2008). Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 22: 239–251.

    Article  CAS  Google Scholar 

  • Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1: 555–567.

    Article  CAS  Google Scholar 

  • Gunning P, Leavitt J, Muscat G, Ng SY, Kedes L . (1987). A human beta-actin expression vector system directs high-level accumulation of antisense transcripts. Proc Natl Acad Sci USA 84: 4831–4835.

    Article  CAS  Google Scholar 

  • Guttilla IK, White BA . (2009). Coordinate regulation of FOXO1 by miR-27a, miR-96, and miR-182 in breast cancer cells. J Biol Chem 284: 23204–23216.

    Article  CAS  Google Scholar 

  • Heddleston JM, Li Z, Lathia JD, Bao S, Hjelmeland AB, Rich JN . (2010). Hypoxia inducible factors in cancer stem cells. Br J Cancer 102: 789–795.

    Article  CAS  Google Scholar 

  • Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN . (2009). The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8: 3274–3284.

    Article  CAS  Google Scholar 

  • Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S et al. (2008). The microRNAs miR-373 and miR-520c promote tumour invasion and metastasis. Nat Cell Biol 10: 202–210.

    Article  CAS  Google Scholar 

  • Hwang-Verslues WW, Kuo WH, Chang PH, Pan CC, Wang HH, Tsai ST et al. (2009). Multiple lineages of human breast cancer stem/progenitor cells identified by profiling with stem cell markers. PLoS One 4: e8377.

    Article  Google Scholar 

  • Hwang-Verslues WW, Sladek FM . (2008). Nuclear receptor hepatocyte nuclear factor 4alpha1 competes with oncoprotein c-Myc for control of the p21/WAF1 promoter. Mol Endocrinol 22: 78–90.

    Article  CAS  Google Scholar 

  • Iliopoulos D, Jaeger SA, Hirsch HA, Bulyk ML, Struhl K . (2010a). STAT3 activation of miR-21 and miR-181b-1 via PTEN and CYLD are part of the epigenetic switch linking inflammation to cancer. Mol Cell 39: 493–506.

    Article  CAS  Google Scholar 

  • Iliopoulos D, Lindahl-Allen M, Polytarchou C, Hirsch HA, Tsichlis PN, Struhl K . (2010b). Loss of miR-200 inhibition of Suz12 leads to polycomb-mediated repression required for the formation and maintenance of cancer stem cells. Mol Cell 39: 761–772.

    Article  CAS  Google Scholar 

  • Inoki K, Li Y, Xu T, Guan KL . (2003). Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev 17: 1829–1834.

    Article  CAS  Google Scholar 

  • Iorio MV, Croce CM . (2009). MicroRNAs in cancer: small molecules with a huge impact. J Clin Oncol 27: 5848–5856.

    Article  CAS  Google Scholar 

  • Karolchik D, Hinrichs AS, Furey TS, Roskin KM, Sugnet CW, Haussler D et al. (2004). The UCSC table browser data retrieval tool. Nucleic Acids Res 32: D493–D496.

    Article  CAS  Google Scholar 

  • Keith B, Simon MC . (2007). Hypoxia-inducible factors, stem cells, and cancer. Cell 129: 465–472.

    Article  CAS  Google Scholar 

  • Lewis BP, Burge CB, Bartel DP . (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120: 15–20.

    Article  CAS  Google Scholar 

  • Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D et al. (2010). miR-9, a MYC/MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 12: 247–256.

    Article  CAS  Google Scholar 

  • Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N . (2006). mTOR, translation initiation and cancer. Oncogene 25: 6416–6422.

    Article  CAS  Google Scholar 

  • Martello G, Rosato A, Ferrari F, Manfrin A, Cordenonsi M, Dupont S et al. (2010). A MicroRNA targeting dicer for metastasis control. Cell 141: 1195–1207.

    Article  CAS  Google Scholar 

  • Mattie MD, Benz CC, Bowers J, Sensinger K, Wong L, Scott GK et al. (2006). Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. Mol Cancer 5: 24.

    Article  Google Scholar 

  • McCord AM, Jamal M, Shankavaram UT, Lang FF, Camphausen K, Tofilon PJ . (2009). Physiologic oxygen concentration enhances the stem-like properties of CD133+ human glioblastoma cells in vitro. Mol Cancer Res 7: 489–497.

    Article  CAS  Google Scholar 

  • Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ . (2003). Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425: 962–967.

    Article  CAS  Google Scholar 

  • Murre C, McCaw PS, Vaessin H, Caudy M, Jan LY, Jan YN et al. (1989). Interactions between heterologous helix-loop-helix proteins generate complexes that bind specifically to a common DNA sequence. Cell 58: 537–544.

    Article  CAS  Google Scholar 

  • Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL et al. (2003). Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 423: 302–305.

    Article  CAS  Google Scholar 

  • Perez-Moreno MA, Locascio A, Rodrigo I, Dhondt G, Portillo F, Nieto MA et al. (2001). A new role for E12/E47 in the repression of E-cadherin expression and epithelial-mesenchymal transitions. J Biol Chem 276: 27424–27431.

    Article  CAS  Google Scholar 

  • Pietersen AM, Evers B, Prasad AA, Tanger E, Cornelissen-Steijger P, Jonkers J et al. (2008). Bmi1 regulates stem cells and proliferation and differentiation of committed cells in mammary epithelium. Curr Biol 18: 1094–1099.

    Article  CAS  Google Scholar 

  • Place RF, Li LC, Pookot D, Noonan EJ, Dahiya R . (2008). MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA 105: 1608–1613.

    Article  CAS  Google Scholar 

  • Qi J, Yu JY, Shcherbata HR, Mathieu J, Wang AJ, Seal S et al. (2009). microRNAs regulate human embryonic stem cell division. Cell Cycle 8: 3729–3741.

    Article  CAS  Google Scholar 

  • Reiling JH, Hafen E . (2004). The hypoxia-induced paralogs scylla and charybdis inhibit growth by down-regulating S6K activity upstream of TSC in Drosophila. Genes Dev 18: 2879–2892.

    Article  CAS  Google Scholar 

  • Semerad CL, Mercer EM, Inlay MA, Weissman IL, Murre C . (2009). E2A proteins maintain the hematopoietic stem cell pool and promote the maturation of myelolymphoid and myeloerythroid progenitors. Proc Natl Acad Sci USA 106: 1930–1935.

    Article  CAS  Google Scholar 

  • Shimono Y, Zabala M, Cho RW, Lobo N, Dalerba P, Qian D et al. (2009). Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 138: 592–603.

    Article  CAS  Google Scholar 

  • Slattery C, McMorrow T, Ryan MP . (2006). Overexpression of E2A proteins induces epithelial-mesenchymal transition in human renal proximal tubular epithelial cells suggesting a potential role in renal fibrosis. FEBS Lett 580: 4021–4030.

    Article  CAS  Google Scholar 

  • Soeda A, Park M, Lee D, Mintz A, Androutsellis-Theotokis A, McKay RD et al. (2009). Hypoxia promotes expansion of the CD133-positive glioma stem cells through activation of HIF-1alpha. Oncogene 28: 3949–3959.

    Article  CAS  Google Scholar 

  • Stefani G, Slack FJ . (2008). Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9: 219–230.

    Article  CAS  Google Scholar 

  • Tavazoie SF, Alarcon C, Oskarsson T, Padua D, Wang Q, Bos PD et al. (2008). Endogenous human microRNAs that suppress breast cancer metastasis. Nature 451: 147–152.

    Article  CAS  Google Scholar 

  • Winter SL, Bosnoyan-Collins L, Pinnaduwage D, Andrulis IL . (2007). Expression of the circadian clock genes Per1 and Per2 in sporadic and familial breast tumors. Neoplasia 9: 797–800.

    Article  CAS  Google Scholar 

  • Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV, Varticovski L . (2008). Brca1 breast tumors contain distinct CD44+/CD24− and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 10: R10.

    Article  Google Scholar 

  • Yang X, Wood PA, Oh EY, Du-Quiton J, Ansell CM, Hrushesky WJ . (2009). Down regulation of circadian clock gene Period 2 accelerates breast cancer growth by altering its daily growth rhythm. Breast Cancer Res Treat 117: 423–431.

    Article  Google Scholar 

  • Yu F, Yao H, Zhu P, Zhang X, Pan Q, Gong C et al. (2007). let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell 131: 1109–1123.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Academia Sinica Peak Project (grant number 2371, 4012); and an Academia Sinica Distinguished Postdocotral Fellowship and a Postdocotral Research Fellowship to WWHV. We thank Dr Paul E Verslues (Institute of Plant and Microbial Biology, Academia Sinica) for critical proofreading of the manuscript and Ms Meng-Han Wang for her kind assistance through this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W-H Lee.

Ethics declarations

Competing interests

WHL serves as a member of Board of Directors of GeneTex and has equity interest. This arrangement has been reviewed and approved by the UC Irvine Conflict of Interest committee. The remaining authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website ()

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang-Verslues, W., Chang, PH., Wei, PC. et al. miR-495 is upregulated by E12/E47 in breast cancer stem cells, and promotes oncogenesis and hypoxia resistance via downregulation of E-cadherin and REDD1. Oncogene 30, 2463–2474 (2011). https://doi.org/10.1038/onc.2010.618

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.618

Keywords

This article is cited by

Search

Quick links