Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The long and winding road to rational treatment of cancer associated with LKB1/AMPK/TSC/mTORC1 signaling

Abstract

The liver kinase B1 (LKB1)/adenosine mono-phosphate-activated protein kinase (AMPK)/tuberous sclerosis complex (TSC)/mammalian target of rapamycin (mTOR) complex (mTORC1) cassette constitutes a canonical signaling pathway that integrates information on the metabolic and nutrient status and translates this into regulation of cell growth. Alterations in this pathway are associated with a wide variety of cancers and hereditary hamartoma syndromes, diseases in which hyperactivation of mTORC1 has been described. Specific mTORC1 inhibitors have been developed for clinical use, and these drugs have been anticipated to provide efficient treatment for these diseases. In the present review, we provide an overview of the metabolic LKB1/AMPK/TSC/mTORC1 pathway, describe how its aberrant signaling associates with cancer development, and indicate the difficulties encountered when biochemical data are extrapolated to provide avenues for rational treatment of disease when targeting this signaling pathway. A careful examination of preclinical and clinical studies performed with rapamycin or derivatives thereof shows that although results are encouraging, we are only half way in the long and winding road to design rationale treatment targeted at the LKB1/AMPK/TSC/mTORC1 pathway. Inherited cancer syndromes associated with this pathway such as the Peutz–Jeghers syndrome and TSC, provide perfect models to study the relationship between genetics and disease phenotype, and to delineate the complexities that underlie translation of biochemical and genetical information to clinical management, and thus provide important clues for devising novel rational medicine for cancerous diseases in general.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

AML:

angiomyolipoma

AMPK:

adenosine mono-phosphate-activated protein kinase

FDA:

Food and Drug Administration

LAM:

lymphangioleiomyomatosis

LKB1:

liver kinase B1

mTOR:

mammalian target of rapamycin

mTORC1:

mTOR complex 1

NET:

neuroendocrine tumor

NF1:

neurofibromatosis type 1

PJS:

Peutz-Jeghers syndrome

RCC:

renal cell carcinoma

SEGA:

subependymal giant cell astrocytoma

TSC:

tuberous sclerosis complex

References

  • Alessi DR, Sakamoto K, Bayascas JR . (2006). LKB1-dependent signaling pathways. Annu Rev Biochem 75: 137–163.

    Article  CAS  PubMed  Google Scholar 

  • Altomare DA, Testa JR . (2005). Perturbations of the AKT signaling pathway in human cancer. Oncogene 24: 7455–7464.

    CAS  PubMed  Google Scholar 

  • Baas AF, Boudeau J, Sapkota GP, Smit L, Medema R, Morrice NA et al. (2003). Activation of the tumour suppressor kinase LKB1 by the STE20-like pseudokinase STRAD. EMBO J 22: 3062–3072.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baybis M, Yu J, Lee A, Golden JA, Weiner H, McKhann II G et al. (2004). mTOR cascade activation distinguishes tubers from focal cortical dysplasia. Ann Neurol 56: 478–487.

    CAS  PubMed  Google Scholar 

  • Benvenuto G, Li S, Brown SJ, Braverman R, Vass WC, Cheadle JP et al. (2000). The tuberous sclerosis-1 (TSC1) gene product hamartin suppresses cell growth and augments the expression of the TSC2 product tuberin by inhibiting its ubiquitination. Oncogene 19: 6306–6316.

    CAS  PubMed  Google Scholar 

  • Bhaskar PT, Hay N . (2007). The two TORCs and Akt. Dev Cell 12: 487–502.

    Article  CAS  PubMed  Google Scholar 

  • Bissler JJ, McCormack FX, Young LR, Elwing JM, Chuck G, Leonard JM et al. (2008). Sirolimus for angiomyolipoma in tuberous sclerosis complex or lymphangioleiomyomatosis. N Engl J Med 358: 140–151.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boudeau J, Baas AF, Deak M, Morrice NA, Kieloch A, Schutkowski M et al. (2003). MO25alpha/beta interact with STRADalpha/beta enhancing their ability to bind, activate and localize LKB1 in the cytoplasm. EMBO J 22: 5102–5114.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brajenovic M, Joberty G, Kuster B, Bouwmeester T, Drewes G . (2004). Comprehensive proteomic analysis of human par protein complexes reveals an interconnected protein network. J Biol Chem 279: 12804–12811.

    CAS  PubMed  Google Scholar 

  • Calva D, Howe JR . (2008). Hamartomatous polyposis syndromes. Surg Clin North Am 88: 779–817, vii.

    PubMed  PubMed Central  Google Scholar 

  • Carling D, Zammit VA, Hardie DG . (1987). A common bicyclic protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett 223: 217–222.

    CAS  PubMed  Google Scholar 

  • Carretero J, Medina PP, Blanco R, Smit L, Tang M, Roncador G et al. (2007). Dysfunctional AMPK activity, signalling through mTOR and survival in response to energetic stress in LKB1-deficient lung cancer. Oncogene 26: 1616–1625.

    CAS  PubMed  Google Scholar 

  • Carsillo T, Astrinidis A, Henske EP . (2000). Mutations in the tuberous sclerosis complex gene TSC2 are a cause of sporadic pulmonary lymphangioleiomyomatosis. Proc Natl Acad Sci USA 97: 6085–6090.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chan HY, Grossman AB, Bukowski RM . (2010). Everolimus in the treatment of renal cell carcinoma and neuroendocrine tumors. Adv Ther 27: 495–511.

    CAS  PubMed  Google Scholar 

  • Chan JA, Zhang H, Roberts PS, Jozwiak S, Wieslawa G, Lewin-Kowalik J et al. (2004). Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol 63: 1236–1242.

    CAS  PubMed  Google Scholar 

  • Chong-Kopera H, Inoki K, Li Y, Zhu T, Garcia-Gonzalo FR, Rosa JL et al. (2006). TSC1 stabilizes TSC2 by inhibiting the interaction between TSC2 and the HERC1 ubiquitin ligase. J Biol Chem 281: 8313–8316.

    CAS  PubMed  Google Scholar 

  • Chung J, Kuo CJ, Crabtree GR, Blenis J . (1992). Rapamycin-FKBP specifically blocks growth-dependent activation of and signaling by the 70 kd S6 protein kinases. Cell 69: 1227–1236.

    CAS  PubMed  Google Scholar 

  • Consortium ECTS . (1993). Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75: 1305–1315.

    Google Scholar 

  • Contreras CM, Gurumurthy S, Haynie JM, Shirley LJ, Akbay EA, Wingo SN et al. (2008). Loss of Lkb1 provokes highly invasive endometrial adenocarcinomas. Cancer Res 68: 759–766.

    CAS  PubMed  Google Scholar 

  • Cook JD, Walker CL . (2004). The Eker rat: establishing a genetic paradigm linking renal cell carcinoma and uterine leiomyoma. Curr Mol Med 4: 813–824.

    CAS  PubMed  Google Scholar 

  • Corradetti MN, Inoki K, Bardeesy N, DePinho RA, Guan KL . (2004). Regulation of the TSC pathway by LKB1: evidence of a molecular link between tuberous sclerosis complex and Peutz-Jeghers syndrome. Genes Dev 18: 1533–1538.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Corsenca A, Aebersold F, Moch H, Bird P, Weber M, Hofbauer G et al. (2007). Combined nephrectomy and pre-emptive renal transplantation in a tuberous sclerosis patient with angiomyolipoma, renal carcinoma and life-threatening abdominal haemorrhages. Nephrol Dial Transplant 22: 3330–3333.

    PubMed  Google Scholar 

  • Curatolo P, Bombardieri R, Jozwiak S . (2008). Tuberous sclerosis. Lancet 372: 657–668.

    CAS  PubMed  Google Scholar 

  • Davies DM, Johnson SR, Tattersfield AE, Kingswood JC, Cox JA, McCartney DL et al. (2008). Sirolimus therapy in tuberous sclerosis or sporadic lymphangioleiomyomatosis. N Engl J Med 358: 200–203.

    CAS  PubMed  Google Scholar 

  • Dennis PB, Jaeschke A, Saitoh M, Fowler B, Kozma SC, Thomas G . (2001). Mammalian TOR: a homeostatic ATP sensor. Science 294: 1102–1105.

    CAS  PubMed  Google Scholar 

  • Dorfman J, Macara IG . (2008). STRADalpha regulates LKB1 localization by blocking access to importin-alpha, and by association with Crm1 and exportin-7. Mol Biol Cell 19: 1614–1626.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dumont FJ, Melino MR, Staruch MJ, Koprak SL, Fischer PA, Sigal NH . (1990). The immunosuppressive macrolides FK-506 and rapamycin act as reciprocal antagonists in murine T cells. J Immunol 144: 1418–1424.

    CAS  PubMed  Google Scholar 

  • Dworakowska D, Grossman AB . (2009). Are neuroendocrine tumours a feature of tuberous sclerosis? A systematic review. Endocr Relat Cancer 16: 45–58.

    CAS  PubMed  Google Scholar 

  • Ehninger D, Han S, Shilyansky C, Zhou Y, Li W, Kwiatkowski DJ et al. (2008). Reversal of learning deficits in a Tsc2+/− mouse model of tuberous sclerosis. Nat Med 14: 843–848.

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Hashemite N, Walker V, Zhang H, Kwiatkowski DJ . (2003). Loss of Tsc1 or Tsc2 induces vascular endothelial growth factor production through mammalian target of rapamycin. Cancer Res 63: 5173–5177.

    CAS  PubMed  Google Scholar 

  • Ess KC . (2010). Tuberous sclerosis complex: a brave new world? Curr Opin Neurol 23: 189–193.

    PubMed  PubMed Central  Google Scholar 

  • Franz DN, Leonard J, Tudor C, Chuck G, Care M, Sethuraman G et al. (2006). Rapamycin causes regression of astrocytomas in tuberous sclerosis complex. Ann Neurol 59: 490–498.

    CAS  PubMed  Google Scholar 

  • Godlewski J, Nowicki MO, Bronisz A, Nuovo G, Palatini J, De Lay M et al. (2010). MicroRNA-451 regulates LKB1/AMPK signaling and allows adaptation to metabolic stress in glioma cells. Mol Cell 37: 620–632.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gurumurthy S, Hezel AF, Sahin E, Berger JH, Bosenberg MW, Bardeesy N . (2008). LKB1 deficiency sensitizes mice to carcinogen-induced tumorigenesis. Cancer Res 68: 55–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS et al. (2008). AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 30: 214–226.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Habib SL, Bhandari B, Sadek N, Abboudwerner S, Abboud HE . (2010). Novel mechanism of regulation of the DNA repair enzyme OGG1 in tuberin-deficient Cells. Carcinogenesis 31: 2022–2030.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haemel AK, O'Brian AL, Teng JM . (2010). Topical rapamycin: a novel approach to facial angiofibromas in tuberous sclerosis. Arch Dermatol 146: 715–718.

    PubMed  Google Scholar 

  • Haidinger M, Hecking M, Weichhart T, Poglitsch M, Enkner W, Vonbank K et al. (2010). Sirolimus in renal transplant recipients with tuberous sclerosis complex: clinical effectiveness and implications for innate immunity. Transpl Int 23: 777–785.

    CAS  PubMed  Google Scholar 

  • Hara K, Maruki Y, Long X, Yoshino K, Oshiro N, Hidayat S et al. (2002). Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 110: 177–189.

    CAS  PubMed  Google Scholar 

  • Hardie DG . (2007). AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8: 774–785.

    CAS  PubMed  Google Scholar 

  • Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP et al. (2003). Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2: 28.

    PubMed  PubMed Central  Google Scholar 

  • Hawley SA, Selbert MA, Goldstein EG, Edelman AM, Carling D, Hardie DG . (1995). 5′-AMP activates the AMP-activated protein kinase cascade, and Ca2+/calmodulin activates the calmodulin-dependent protein kinase I cascade, via three independent mechanisms. J Biol Chem 270: 27186–27191.

    CAS  PubMed  Google Scholar 

  • Hay N, Sonenberg N . (2004). Upstream and downstream of mTOR. Genes Dev 18: 1926–1945.

    CAS  PubMed  Google Scholar 

  • Hegedus B, Banerjee D, Yeh TH, Rothermich S, Perry A, Rubin JB et al. (2008). Preclinical cancer therapy in a mouse model of neurofibromatosis-1 optic glioma. Cancer Res 68: 1520–1528.

    CAS  PubMed  Google Scholar 

  • Heitman J, Movva NR, Hall MN . (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science 253: 905–909.

    CAS  PubMed  Google Scholar 

  • Hemminki A, Markie D, Tomlinson I, Avizienyte E, Roth S, Loukola A et al. (1998). A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391: 184–187.

    CAS  PubMed  Google Scholar 

  • Herry I, Neukirch C, Debray MP, Mignon F, Crestani B . (2007). Dramatic effect of sirolimus on renal angiomyolipomas in a patient with tuberous sclerosis complex. Eur J Intern Med 18: 76–77.

    PubMed  Google Scholar 

  • Hezel AF, Bardeesy N . (2008). LKB1; linking cell structure and tumor suppression. Oncogene 27: 6908–6919.

    CAS  PubMed  Google Scholar 

  • Hezel AF, Gurumurthy S, Granot Z, Swisa A, Chu GC, Bailey G et al. (2008). Pancreatic LKB1 deletion leads to acinar polarity defects and cystic neoplasms. Mol Cell Biol 28: 2414–2425.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hino O . (2004). Multistep renal carcinogenesis in the Eker (Tsc 2 gene mutant) rat model. Curr Mol Med 4: 807–811.

    CAS  PubMed  Google Scholar 

  • Hofbauer GF, Marcollo-Pini A, Corsenca A, Kistler AD, French LE, Wuthrich RP et al. (2008). The mTOR inhibitor rapamycin significantly improves facial angiofibroma lesions in a patient with tuberous sclerosis. Br J Dermatol 159: 473–475.

    CAS  PubMed  Google Scholar 

  • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y et al. (2009). Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 20: 1981–1991.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Manning BD . (2008). The TSC1-TSC2 complex: a molecular switchboard controlling cell growth. Biochem J 412: 179–190.

    CAS  PubMed  Google Scholar 

  • Huang S, Bjornsti MA, Houghton PJ . (2003). Rapamycins: mechanism of action and cellular resistance. Cancer Biol Ther 2: 222–232.

    CAS  PubMed  Google Scholar 

  • Huang X, Wullschleger S, Shpiro N, McGuire VA, Sakamoto K, Woods YL et al. (2008). Important role of the LKB1-AMPK pathway in suppressing tumorigenesis in PTEN-deficient mice. Biochem J 412: 211–221.

    CAS  PubMed  Google Scholar 

  • Hudson CC, Liu M, Chiang GG, Otterness DM, Loomis DC, Kaper F et al. (2002). Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol Cell Biol 22: 7004–7014.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ikeda Y, Sato K, Pimentel DR, Sam F, Shaw RJ, Dyck JR et al. (2009). Cardiac-specific deletion of LKB1 leads to hypertrophy and dysfunction. J Biol Chem 284: 35839–35849.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoki K, Ouyang H, Li Y, Guan KL . (2005). Signaling by target of rapamycin proteins in cell growth control. Microbiol Mol Biol Rev 69: 79–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Inoki K, Ouyang H, Zhu T, Lindvall C, Wang Y, Zhang X et al. (2006). TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 126: 955–968.

    CAS  PubMed  Google Scholar 

  • Inoki K, Zhu T, Guan KL . (2003). TSC2 mediates cellular energy response to control cell growth and survival. Cell 115: 577–590.

    CAS  PubMed  Google Scholar 

  • Jaleel M, McBride A, Lizcano JM, Deak M, Toth R, Morrice NA et al. (2005). Identification of the sucrose non-fermenting related kinase SNRK, as a novel LKB1 substrate. FEBS Lett 579: 1417–1423.

    CAS  PubMed  Google Scholar 

  • Jansen M, Ten Klooster JP, Offerhaus GJ, Clevers H . (2009). LKB1 and AMPK family signaling: the intimate link between cell polarity and energy metabolism. Physiol Rev 89: 777–798.

    CAS  PubMed  Google Scholar 

  • Jenne DE, Reimann H, Nezu J, Friedel W, Loff S, Jeschke R et al. (1998). Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18: 38–43.

    CAS  PubMed  Google Scholar 

  • Jiang WG, Sampson J, Martin TA, Lee-Jones L, Watkins G, Douglas-Jones A et al. (2005). Tuberin and hamartin are aberrantly expressed and linked to clinical outcome in human breast cancer: the role of promoter methylation of TSC genes. Eur J Cancer 41: 1628–1636.

    CAS  PubMed  Google Scholar 

  • Jishage K, Nezu J, Kawase Y, Iwata T, Watanabe M, Miyoshi A et al. (2002). Role of Lkb1, the causative gene of Peutz-Jegher′s syndrome, in embryogenesis and polyposis. Proc Natl Acad Sci USA 99: 8903–8908.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johannessen CM, Johnson BW, Williams SM, Chan AW, Reczek EE, Lynch RC et al. (2008). TORC1 is essential for NF1-associated malignancies. Curr Biol 18: 56–62.

    CAS  PubMed  Google Scholar 

  • Jozwiak J, Kotulska K, Lojek M, Galus R, Jozwiak S, Polnik D et al. (2009). Fibroblasts from normal skin of a tuberous sclerosis patient show upregulation of mTOR pathway. Am J Dermatopathol 31: 68–70.

    PubMed  Google Scholar 

  • Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J et al. (2009). ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell 20: 1992–2003.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kantidakis T, Ramsbottom BA, Birch JL, Dowding SN, White RJ . (2010). mTOR associates with TFIIIC, is found at tRNA and 5S rRNA genes, and targets their repressor Maf1. Proc Natl Acad Sci USA 107: 11823–11828.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kasper M, Jaks V, Fiaschi M, Toftgard R . (2009). Hedgehog signalling in breast cancer. Carcinogenesis 30: 903–911.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katajisto P, Vaahtomeri K, Ekman N, Ventela E, Ristimaki A, Bardeesy N et al. (2008). LKB1 signaling in mesenchymal cells required for suppression of gastrointestinal polyposis. Nat Genet 40: 455–459.

    CAS  PubMed  Google Scholar 

  • Kaufman McNamara E, Curtis AR, Fleischer Jr AB . (2010). Successful treatment of angiofibromata of tuberous sclerosis complex with rapamycin. J Dermatolog Treat (e-pub ahead of print).

    Google Scholar 

  • Kenerson H, Dundon TA, Yeung RS . (2005). Effects of rapamycin in the Eker rat model of tuberous sclerosis complex. Pediatr Res 57: 67–75.

    CAS  PubMed  Google Scholar 

  • Kim DH, Sarbassov DD, Ali SM, King JE, Latek RR, Erdjument-Bromage H et al. (2002). mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 110: 163–175.

    CAS  PubMed  Google Scholar 

  • Knowles MA, Hornigold N, Pitt E . (2003). Tuberous sclerosis complex (TSC) gene involvement in sporadic tumours. Biochem Soc Trans 31: 597–602.

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Minowa O, Kuno J, Mitani H, Hino O, Noda T . (1999). Renal carcinogenesis, hepatic hemangiomatosis, and embryonic lethality caused by a germ-line Tsc2 mutation in mice. Cancer Res 59: 1206–1211.

    CAS  PubMed  Google Scholar 

  • Koenig MK, Butler IJ, Northrup H . (2008). Regression of subependymal giant cell astrocytoma with rapamycin in tuberous sclerosis complex. J Child Neurol 23: 1238–1239.

    PubMed  PubMed Central  Google Scholar 

  • Kola B, Boscaro M, Rutter GA, Grossman AB, Korbonits M . (2006). Expanding role of AMPK in endocrinology. Trends Endocrinol Metab 17: 205–215.

    CAS  PubMed  Google Scholar 

  • Krischock L, Beach R, Taylor J . (2010). Sirolimus and tuberous sclerosis-associated renal angiomyolipomas. Arch Dis Child 95: 391–392.

    CAS  PubMed  Google Scholar 

  • Krueger DA, Care MM, Holland K, Agricola K, Tudor C, Mangeshkar P et al. (2010). Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N Engl J Med 363: 1801–1811.

    CAS  PubMed  Google Scholar 

  • Kurth-Kraczek EJ, Hirshman MF, Goodyear LJ, Winder WW . (1999). 5′ AMP-activated protein kinase activation causes GLUT4 translocation in skeletal muscle. Diabetes 48: 1667–1671.

    CAS  PubMed  Google Scholar 

  • Kwiatkowski DJ, Zhang H, Bandura JL, Heiberger KM, Glogauer M, el-Hashemite N et al. (2002). A mouse model of TSC1 reveals sex-dependent lethality from liver hemangiomas, and up-regulation of p70S6 kinase activity in Tsc1 null cells. Hum Mol Genet 11: 525–534.

    CAS  PubMed  Google Scholar 

  • Lam C, Bouffet E, Tabori U, Mabbott D, Taylor M, Bartels U . (2010). Rapamycin (sirolimus) in tuberous sclerosis associated pediatric central nervous system tumors. Pediatr Blood Cancer 54: 476–479.

    PubMed  Google Scholar 

  • Law BK . (2005). Rapamycin: an anti-cancer immunosuppressant? Crit Rev Oncol Hematol 56: 47–60.

    PubMed  Google Scholar 

  • Lee L, Sudentas P, Dabora SL . (2006). Combination of a rapamycin analog (CCI-779) and interferon-gamma is more effective than single agents in treating a mouse model of tuberous sclerosis complex. Genes Chromosomes Cancer 45: 933–944.

    PubMed  Google Scholar 

  • Lee L, Sudentas P, Donohue B, Asrican K, Worku A, Walker V et al. (2005). Efficacy of a rapamycin analog (CCI-779) and IFN-gamma in tuberous sclerosis mouse models. Genes Chromosomes Cancer 42: 213–227.

    CAS  PubMed  Google Scholar 

  • Lee PS, Tsang SW, Moses MA, Trayes-Gibson Z, Hsiao LL, Jensen R et al. (2010). Rapamycin-insensitive up-regulation of MMP2 and other genes in tuberous sclerosis complex 2-deficient lymphangioleiomyomatosis-like cells. Am J Respir Cell Mol Biol 42: 227–234.

    CAS  PubMed  Google Scholar 

  • Lim CT, Kola B, Korbonits M . (2010). AMPK as a mediator of hormonal signalling. J Mol Endocrinol 44: 87–97.

    CAS  PubMed  Google Scholar 

  • Lizcano JM, Goransson O, Toth R, Deak M, Morrice NA, Boudeau J et al. (2004). LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J 23: 833–843.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Massoumi R, Sjolander A . (2007). The role of leukotriene receptor signaling in inflammation and cancer. ScientificWorldJournal 7: 1413–1421.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy A, Lord CJ, Savage K, Grigoriadis A, Smith DP, Weigelt B et al. (2009). Conditional deletion of the Lkb1 gene in the mouse mammary gland induces tumour formation. J Pathol 219: 306–316.

    CAS  PubMed  Google Scholar 

  • McGarrity TJ, Amos C . (2006). Peutz-Jeghers syndrome: clinicopathology and molecular alterations. Cell Mol Life Sci 63: 2135–2144.

    CAS  PubMed  Google Scholar 

  • Meikle L, Pollizzi K, Egnor A, Kramvis I, Lane H, Sahin M et al. (2008). Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORC1 and Akt signaling lead to improved survival and function. J Neurosci 28: 5422–5432.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mi R, Ma J, Zhang D, Li L, Zhang H . (2009). Efficacy of combined inhibition of mTOR and ERK/MAPK pathways in treating a tuberous sclerosis complex cell model. J Genet Genomics 36: 355–361.

    CAS  PubMed  Google Scholar 

  • Michels AA, Robitaille AM, Buczynski-Ruchonnet D, Hodroj W, Reina JH, Hall MN et al. (2010). mTORC1 directly phosphorylates and regulates human MAF1. Mol Cell Biol 30: 3749–3757.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Missiaglia E, Dalai I, Barbi S, Beghelli S, Falconi M, della Peruta M et al. (2010). Pancreatic endocrine tumors: expression profiling evidences a role for AKT-mTOR pathway. J Clin Oncol 28: 245–255.

    CAS  PubMed  Google Scholar 

  • Miyata H, Chiang AC, Vinters HV . (2004). Insulin signaling pathways in cortical dysplasia and TSC-tubers: tissue microarray analysis. Ann Neurol 56: 510–519.

    CAS  PubMed  Google Scholar 

  • Miyoshi H, Nakau M, Ishikawa TO, Seldin MF, Oshima M, Taketo MM . (2002). Gastrointestinal hamartomatous polyposis in Lkb1 heterozygous knockout mice. Cancer Res 62: 2261–2266.

    CAS  PubMed  Google Scholar 

  • Moore F, Weekes J, Hardie DG . (1991). Evidence that AMP triggers phosphorylation as well as direct allosteric activation of rat liver AMP-activated protein kinase. A sensitive mechanism to protect the cell against ATP depletion. Eur J Biochem 199: 691–697.

    CAS  PubMed  Google Scholar 

  • Muncy J, Butler IJ, Koenig MK . (2009). Rapamycin reduces seizure frequency in tuberous sclerosis complex. J Child Neurol 24: 477.

    PubMed  PubMed Central  Google Scholar 

  • Onda H, Crino PB, Zhang H, Murphey RD, Rastelli L, Gould Rothberg BE et al. (2002). Tsc2 null murine neuroepithelial cells are a model for human tuber giant cells, and show activation of an mTOR pathway. Mol Cell Neurosci 21: 561–574.

    CAS  PubMed  Google Scholar 

  • Orlova KA, Crino PB . (2010). The tuberous sclerosis complex. Ann NY Acad Sci 1184: 87–105.

    CAS  PubMed  Google Scholar 

  • Ouyang J, Parakhia RA, Ochs RS . (2010). Metformin activates AMP-kinase through inhibition of AMP deaminase. J Biol Chem 286: 1–11.

    PubMed  PubMed Central  Google Scholar 

  • Papanas N, Maltezos E, Mikhailidis DP . (2010). Metformin and cancer: licence to heal? Expert Opin Investig Drugs 19: 913–917.

    CAS  PubMed  Google Scholar 

  • Parrinello S, Lloyd AC . (2009). Neurofibroma development in NF1--insights into tumour initiation. Trends Cell Biol 19: 395–403.

    CAS  PubMed  Google Scholar 

  • Pearson HB, McCarthy A, Collins CM, Ashworth A, Clarke AR . (2008). Lkb1 deficiency causes prostate neoplasia in the mouse. Cancer Res 68: 2223–2232.

    CAS  PubMed  Google Scholar 

  • Peces R, Peces C, Cuesta-Lopez E, Perez-Duenas V, Vega-Cabrera C, Azorin S et al. (2010). Low-dose rapamycin reduces kidney volume angiomyolipomas and prevents the loss of renal function in a patient with tuberous sclerosis complex. Nephrol Dial Transplant 25: 3787–3791.

    PubMed  Google Scholar 

  • Podsypanina K, Lee RT, Politis C, Hennessy I, Crane A, Puc J et al. (2001). An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc Natl Acad Sci USA 98: 10320–10325.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pollizzi K, Malinowska-Kolodziej I, Stumm M, Lane H, Kwiatkowski D . (2009). Equivalent benefit of mTORC1 blockade and combined PI3K-mTOR blockade in a mouse model of tuberous sclerosis. Mol Cancer 8: 38.

    PubMed  PubMed Central  Google Scholar 

  • Pressey JG, Wright JM, Geller JI, Joseph DB, Pressey CS, Kelly DR . (2010). Sirolimus therapy for fibromatosis and multifocal renal cell carcinoma in a child with tuberous sclerosis complex. Pediatr Blood Cancer 54: 1035–1037.

    PubMed  Google Scholar 

  • Rennebeck G, Kleymenova EV, Anderson R, Yeung RS, Artzt K, Walker CL . (1998). Loss of function of the tuberous sclerosis 2 tumor suppressor gene results in embryonic lethality characterized by disrupted neuroepithelial growth and development. Proc Natl Acad Sci USA 95: 15629–15634.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson J, Lai C, Martin A, Nye E, Tomlinson I, Silver A . (2009). Oral rapamycin reduces tumour burden and vascularization in Lkb1(+/−) mice. J Pathol 219: 35–40.

    CAS  PubMed  Google Scholar 

  • Rosner M, Hanneder M, Siegel N, Valli A, Hengstschlager M . (2008). The tuberous sclerosis gene products hamartin and tuberin are multifunctional proteins with a wide spectrum of interacting partners. Mutat Res 658: 234–246.

    CAS  PubMed  Google Scholar 

  • Sancak O, Nellist M, Goedbloed M, Elfferich P, Wouters C, Maat-Kievit A et al. (2005). Mutational analysis of the TSC1 and TSC2 genes in a diagnostic setting: genotype--phenotype correlations and comparison of diagnostic DNA techniques in tuberous sclerosis complex. Eur J Hum Genet 13: 731–741.

    CAS  PubMed  Google Scholar 

  • Sansal I, Sellers WR . (2004). The biology and clinical relevance of the PTEN tumor suppressor pathway. J Clin Oncol 22: 2954–2963.

    CAS  PubMed  Google Scholar 

  • Schwartz RA, Fernandez G, Kotulska K, Jozwiak S . (2007). Tuberous sclerosis complex: advances in diagnosis, genetics, and management. J Am Acad Dermatol 57: 189–202.

    PubMed  Google Scholar 

  • Sehgal SN, Baker H, Vezina C . (1975). Rapamycin (AY-22,989), a new antifungal antibiotic. II. Fermentation, isolation and characterization. J Antibiot (Tokyo) 28: 727–732.

    CAS  Google Scholar 

  • Shackelford DB, Shaw RJ . (2009). The LKB1-AMPK pathway: metabolism and growth control in tumour suppression. Nat Rev Cancer 9: 563–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shackelford DB, Vasquez DS, Corbeil J, Wu S, Leblanc M, Wu CL et al. (2009). mTOR and HIF-1alpha-mediated tumor metabolism in an LKB1 mouse model of Peutz-Jeghers syndrome. Proc Natl Acad Sci USA 106: 11137–11142.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw RJ, Bardeesy N, Manning BD, Lopez L, Kosmatka M, DePinho RA et al. (2004). The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 6: 91–99.

    CAS  PubMed  Google Scholar 

  • Shaw RJ, Lamia KA, Vasquez D, Koo SH, Bardeesy N, Depinho RA et al. (2005). The kinase LKB1 mediates glucose homeostasis in liver and therapeutic effects of metformin. Science 310: 1642–1646.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sofer A, Lei K, Johannessen CM, Ellisen LW . (2005). Regulation of mTOR and cell growth in response to energy stress by REDD1. Mol Cell Biol 25: 5834–5845.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sparagana SP, Wilkes DC, Thompson CE, Bowers DC . (2010). Optic nerve tumor in tuberous sclerosis complex is not responsive to sirolimus. Pediatr Neurol 42: 443–446.

    PubMed  Google Scholar 

  • Spicer J, Rayter S, Young N, Elliott R, Ashworth A, Smith D . (2003). Regulation of the Wnt signalling component PAR1A by the Peutz-Jeghers syndrome kinase LKB1. Oncogene 22: 4752–4756.

    CAS  PubMed  Google Scholar 

  • Squarize CH, Castilho RM, Gutkind JS . (2008). Chemoprevention and treatment of experimental Cowden′s disease by mTOR inhibition with rapamycin. Cancer Res 68: 7066–7072.

    CAS  PubMed  Google Scholar 

  • Tarasewicz A, Debska-Slizien A, Konopa J, Zdrojewski Z, Rutkowski B . (2009). Rapamycin as a therapy of choice after renal transplantation in a patient with tuberous sclerosis complex. Transplant Proc 41: 3677–3682.

    CAS  PubMed  Google Scholar 

  • Tomlinson IP, Houlston RS . (1997). Peutz-Jeghers syndrome. J Med Genet 34: 1007–1011.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Uhlmann EJ, Li W, Scheidenhelm DK, Gau CL, Tamanoi F, Gutmann DH . (2004). Loss of tuberous sclerosis complex 1 (Tsc1) expression results in increased Rheb/S6K pathway signaling important for astrocyte cell size regulation. Glia 47: 180–188.

    PubMed  Google Scholar 

  • Uhlmann EJ, Wong M, Baldwin RL, Bajenaru ML, Onda H, Kwiatkowski DJ et al. (2002). Astrocyte-specific TSC1 conditional knockout mice exhibit abnormal neuronal organization and seizures. Ann Neurol 52: 285–296.

    CAS  PubMed  Google Scholar 

  • van Lier MG, Wagner A, van Leerdam ME, Biermann K, Kuipers EJ, Steyerberg EW et al. (2010). A review on the molecular diagnostics of Lynch syndrome: a central role for the pathology laboratory. J Cell Mol Med 14: 181–197.

    CAS  PubMed  Google Scholar 

  • van Slegtenhorst M, de Hoogt R, Hermans C, Nellist M, Janssen B, Verhoef S et al. (1997). Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 277: 805–808.

    CAS  PubMed  Google Scholar 

  • van Slegtenhorst M, Nellist M, Nagelkerken B, Cheadle J, Snell R, van den Ouweland A et al. (1998). Interaction between hamartin and tuberin, the TSC1 and TSC2 gene products. Hum Mol Genet 7: 1053–1057.

    CAS  PubMed  Google Scholar 

  • Vander Haar E, Lee SI, Bandhakavi S, Griffin TJ, Kim DH . (2007). Insulin signalling to mTOR mediated by the Akt/PKB substrate PRAS40. Nat Cell Biol 9: 316–323.

    CAS  PubMed  Google Scholar 

  • Vezina C, Kudelski A, Sehgal SN . (1975). Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo) 28: 721–726.

    CAS  Google Scholar 

  • Villanueva A, Chiang DY, Newell P, Peix J, Thung S, Alsinet C et al. (2008). Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 135: 1972–1983, 1983.e1971-1911.

    CAS  PubMed  Google Scholar 

  • Wei C, Amos CI, Zhang N, Wang X, Rashid A, Walker CL et al. (2008). Suppression of Peutz-Jeghers polyposis by targeting mammalian target of rapamycin signaling. Clin Cancer Res 14: 1167–1171.

    CAS  PubMed  Google Scholar 

  • Wei C, Amos CI, Zhang N, Zhu J, Wang X, Frazier ML . (2009). Chemopreventive efficacy of rapamycin on Peutz-Jeghers syndrome in a mouse model. Cancer Lett 277: 149–154.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wicker LS, Boltz Jr RC, Matt V, Nichols EA, Peterson LB, Sigal NH . (1990). Suppression of B cell activation by cyclosporin A, FK506 and rapamycin. Eur J Immunol 20: 2277–2283.

    CAS  PubMed  Google Scholar 

  • Wienecke R, Fackler I, Linsenmaier U, Mayer K, Licht T, Kretzler M . (2006). Antitumoral activity of rapamycin in renal angiomyolipoma associated with tuberous sclerosis complex. Am J Kidney Dis 48: e27–e29.

    PubMed  Google Scholar 

  • Wienecke R, Konig A, DeClue JE . (1995). Identification of tuberin, the tuberous sclerosis-2 product. Tuberin possesses specific Rap1GAP activity. J Biol Chem 270: 16409–16414.

    CAS  PubMed  Google Scholar 

  • Woodrum C, Nobil A, Dabora SL . (2010). Comparison of three rapamycin dosing schedules in A/J Tsc2+/− mice and improved survival with angiogenesis inhibitor or asparaginase treatment in mice with subcutaneous tuberous sclerosis related tumors. J Transl Med 8: 14.

    PubMed  PubMed Central  Google Scholar 

  • Xiao GH, Shoarinejad F, Jin F, Golemis EA, Yeung RS . (1997). The tuberous sclerosis 2 gene product, tuberin, functions as a Rab5 GTPase activating protein (GAP) in modulating endocytosis. J Biol Chem 272: 6097–6100.

    CAS  PubMed  Google Scholar 

  • Yalon M, Ben-Sira L, Constantini S, Toren A . (2010). Regression of subependymal giant cell astrocytomas with RAD001 (Everolimus) in tuberous sclerosis complex. Childs Nerv Syst 27: 179–181.

    PubMed  Google Scholar 

  • Yeung RS . (2004). Lessons from the Eker rat model: from cage to bedside. Curr Mol Med 4: 799–806.

    CAS  PubMed  Google Scholar 

  • Ylikorkala A, Rossi DJ, Korsisaari N, Luukko K, Alitalo K, Henkemeyer M et al. (2001). Vascular abnormalities and deregulation of VEGF in Lkb1-deficient mice. Science 293: 1323–1326.

    CAS  PubMed  Google Scholar 

  • Yoo LI, Chung DC, Yuan J . (2002). LKB1—a master tumour suppressor of the small intestine and beyond. Nat Rev Cancer 2: 529–535.

    CAS  PubMed  Google Scholar 

  • Zeng LH, Xu L, Gutmann DH, Wong M . (2008). Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol 63: 444–453.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Cicchetti G, Onda H, Koon HB, Asrican K, Bajraszewski N et al. (2003a). Loss of Tsc1/Tsc2 activates mTOR and disrupts PI3K-Akt signaling through downregulation of PDGFR. J Clin Invest 112: 1223–1233.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Gao X, Saucedo LJ, Ru B, Edgar BA, Pan D . (2003b). Rheb is a direct target of the tuberous sclerosis tumour suppressor proteins. Nat Cell Biol 5: 578–581.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge the financial support from the Foundation ‘Michelle’ as well as from the TOP-institute pharma scheme of the Dutch government for their studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M P Peppelenbosch.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Veelen, W., Korsse, S., van de Laar, L. et al. The long and winding road to rational treatment of cancer associated with LKB1/AMPK/TSC/mTORC1 signaling. Oncogene 30, 2289–2303 (2011). https://doi.org/10.1038/onc.2010.630

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.630

Keywords

This article is cited by

Search

Quick links