Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

p16Ink4a overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors

Abstract

p16Ink4a is a protein involved in regulation of the cell cycle. Currently, p16Ink4a is considered a tumor suppressor protein because of its physiological role and downregulated expression in a large number of tumors. Intriguingly, overexpression of p16Ink4a has also been described in several tumors. This review attempts to elucidate when and why p16Ink4a overexpression occurs, and to suggest possible implications of p16Ink4a in the diagnosis, prognosis and treatment of cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Adachi Y, Lakka SS, Chandrasekar N, Yanamandra N, Gondi CS, Mohanam S et al. (2001). Down-regulation of integrin alpha(v)beta(3) expression and integrin-mediated signaling in glioma cells by adenovirus-mediated transfer of antisense urokinase-type plasminogen activator receptor (uPAR) and sense p16 genes. J Biol Chem 276: 47171–47177.

    CAS  PubMed  Google Scholar 

  • Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D, Barrett JC . (1996). Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci USA 93: 13742–13747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andujar P, Wang J, Descatha A, Galateau-Salle F, Abd-Alsamad I, Billon-Galland MA et al. (2010). p16INK4A inactivation mechanisms in non-small-cell lung cancer patients occupationally exposed to asbestos. Lung Cancer 67: 23–30.

    PubMed  Google Scholar 

  • Angiero F, Berenzi A, Benetti A, Rossi E, Del Sordo R, Sidoni A et al. (2008). Expression of p16, p53 and Ki-67 proteins in the progression of epithelial dysplasia of the oral cavity. Anticancer Res 28: 2535–2539.

    PubMed  Google Scholar 

  • Arifin MT, Hama S, Kajiwara Y, Sugiyama K, Saito T, Matsuura S et al. (2006). Cytoplasmic, but not nuclear, p16 expression may signal poor prognosis in high-grade astrocytomas. J Neurooncol 77: 273–277.

    CAS  PubMed  Google Scholar 

  • Armes JE, Lourie R, de Silva M, Stamaratis G, Boyd A, Kumar B et al. (2005). Abnormalities of the RB1 pathway in ovarian serous papillary carcinoma as determined by overexpression of the p16(INK4A) protein. Int J Gynecol Pathol 24: 363–368.

    PubMed  Google Scholar 

  • Atkins KA, Arronte N, Darus CJ, Rice LW . (2008). The use of p16 in enhancing the histologic classification of uterine smooth muscle tumors. Am J Surg Pathol 32: 98–102.

    PubMed  Google Scholar 

  • Ayhan S, Isisag A, Saruc M, Nese N, Demir MA, Kucukmetin NT . (2010). The role of pRB, p16 and cyclin D1 in colonic carcinogenesis. Hepatogastroenterology 57: 251–256.

    PubMed  Google Scholar 

  • Bardeesy N, Aguirre AJ, Chu GC, Cheng KH, Lopez LV, Hezel AF et al. (2006). Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci USA 103: 5947–5952.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bartsch DK, Sina-Frey M, Lang S, Wild A, Gerdes B, Barth P et al. (2002). CDKN2A germline mutations in familial pancreatic cancer. Ann Surg 236: 730–737.

    PubMed  PubMed Central  Google Scholar 

  • Bastide K, Guilly MN, Bernaudin JF, Joubert C, Lectard B, Levalois C et al. (2009). Molecular analysis of the Ink4a/Rb1-Arf/Tp53 pathways in radon-induced rat lung tumors. Lung Cancer 63: 348–353.

    PubMed  Google Scholar 

  • Beasley MB, Lantuejoul S, Abbondanzo S, Chu WS, Hasleton PS, Travis WD et al. (2003). The P16/cyclin D1/Rb pathway in neuroendocrine tumors of the lung. Hum Pathol 34: 136–142.

    CAS  PubMed  Google Scholar 

  • Bennecke M, Kriegl L, Bajbouj M, Retzlaff K, Robine S, Jung A et al. (2010). Ink4a/Arf and oncogene-induced senescence prevent tumor progression during alternative colorectal tumorigenesis. Cancer Cell 18: 135–146.

    CAS  PubMed  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B et al. (2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436: 660–665.

    CAS  PubMed  Google Scholar 

  • Brambilla E, Gazzeri S, Moro D, Lantuejoul S, Veyrenc S, Brambilla C . (1999a). Alterations of Rb pathway (Rb-p16INK4-cyclin D1) in preinvasive bronchial lesions. Clin Cancer Res 5: 243–250.

    CAS  PubMed  Google Scholar 

  • Brambilla E, Moro D, Gazzeri S, Brambilla C . (1999b). Alterations of expression of Rb, p16(INK4A) and cyclin D1 in non-small cell lung carcinoma and their clinical significance. J Pathol 188: 351–360.

    CAS  PubMed  Google Scholar 

  • Bringold F, Serrano M . (2000). Tumor suppressors and oncogenes in cellular senescence. Exp Gerontol 35: 317–329.

    CAS  PubMed  Google Scholar 

  • Buajeeb W, Poomsawat S, Punyasingh J, Sanguansin S . (2009). Expression of p16 in oral cancer and premalignant lesions. J Oral Pathol Med 38: 104–108.

    PubMed  Google Scholar 

  • Calbo J, Marotta M, Cascallo M, Roig JM, Gelpi JL, Fueyo J et al. (2001). Adenovirus-mediated wt-p16 reintroduction induces cell cycle arrest or apoptosis in pancreatic cancer. Cancer Gene Ther 8: 740–750.

    CAS  PubMed  Google Scholar 

  • Calbo J, Serna C, Garriga J, Grana X, Mazo A . (2004). The fate of pancreatic tumor cell lines following p16 overexpression depends on the modulation of CDK2 activity. Cell Death Differ 11: 1055–1065.

    CAS  PubMed  Google Scholar 

  • Campo-Trapero J, Cano-Sanchez J, Palacios-Sanchez B, Llamas-Martinez S, Lo Muzio L, Bascones-Martinez A . (2008). Cellular senescence in oral cancer and precancer and treatment implications: a review. Acta Oncol 47: 1464–1474.

    CAS  PubMed  Google Scholar 

  • Canepa ET, Scassa ME, Ceruti JM, Marazita MC, Carcagno AL, Sirkin PF et al. (2007). INK4 proteins, a family of mammalian CDK inhibitors with novel biological functions. IUBMB Life 59: 419–426.

    CAS  PubMed  Google Scholar 

  • Carnero A, Lleonart ME . (2010). Epigenetic mechanisms in senescence, immortalisation and cancer. Biol Rev Camb Philos Soc (doi:10.1111/j.1469-185X.2010.00154.x).

    PubMed  Google Scholar 

  • Carragher LA, Snell KR, Giblett SM, Aldridge VS, Patel B, Cook SJ et al. (2010). (V600E)Braf induces gastrointestinal crypt senescence and promotes tumour progression through enhanced CpG methylation of p16(INK4a). EMBO Mol Med 2: 458–471.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chao DL, Sanchez CA, Galipeau PC, Blount PL, Paulson TG, Cowan DS et al. (2008). Cell proliferation, cell cycle abnormalities, and cancer outcome in patients with Barrett's esophagus: a long-term prospective study. Clin Cancer Res 14: 6988–6995.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen JH, Ozanne SE, Hales CN . (2005). Heterogeneity in premature senescence by oxidative stress correlates with differential DNA damage during the cell cycle. DNA Repair (Amst) 4: 1140–1148.

    CAS  Google Scholar 

  • Chien WW, Domenech C, Catallo R, Salles G, Ffrench M . (2010). S-phase lengthening induced by p16(INK4a) overexpression in malignant cells with wild-type pRb and p53. Cell Cycle 9: 3286–3296.

    CAS  PubMed  Google Scholar 

  • Chim CS, Wong AS, Kwong YL . (2003). Epigenetic inactivation of INK4/CDK/RB cell cycle pathway in acute leukemias. Ann Hematol 82: 738–742.

    CAS  PubMed  Google Scholar 

  • Chintala SK, Fueyo J, Gomez-Manzano C, Venkaiah B, Bjerkvig R, Yung WK et al. (1997). Adenovirus-mediated p16/CDKN2 gene transfer suppresses glioma invasion in vitro. Oncogene 15: 2049–2057.

    CAS  PubMed  Google Scholar 

  • Collado M, Blasco MA, Serrano M . (2007). Cellular senescence in cancer and aging. Cell 130: 223–233.

    CAS  PubMed  Google Scholar 

  • Collado M, Gil J, Efeyan A, Guerra C, Schuhmacher AJ, Barradas M et al. (2005). Tumour biology: senescence in premalignant tumours. Nature 436: 642.

    CAS  PubMed  Google Scholar 

  • Courtois-Cox S, Genther Williams SM, Reczek EE, Johnson BW, McGillicuddy LT, Johannessen CM et al. (2006). A negative feedback signaling network underlies oncogene-induced senescence. Cancer Cell 10: 459–472.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crea F, Giovannetti E, Cortesi F, Mey V, Nannizzi S, Gallegos Ruiz MI et al. (2009). Epigenetic mechanisms of irinotecan sensitivity in colorectal cancer cell lines. Mol Cancer Ther 8: 1964–1973.

    CAS  PubMed  Google Scholar 

  • Dai CY, Furth EE, Mick R, Koh J, Takayama T, Niitsu Y et al. (2000). p16(INK4a) expression begins early in human colon neoplasia and correlates inversely with markers of cell proliferation. Gastroenterology 119: 929–942.

    CAS  PubMed  Google Scholar 

  • Daniotti M, Ferrari A, Frigerio S, Casieri P, Miselli F, Zucca E et al. (2009). Cutaneous melanoma in childhood and adolescence shows frequent loss of INK4A and gain of KIT. J Invest Dermatol 129: 1759–1768.

    CAS  PubMed  Google Scholar 

  • Di Vinci A, Perdelli L, Banelli B, Salvi S, Casciano I, Gelvi I et al. (2005). p16(INK4a) promoter methylation and protein expression in breast fibroadenoma and carcinoma. Int J Cancer 114: 414–421.

    CAS  PubMed  Google Scholar 

  • Dublin EA, Patel NK, Gillett CE, Smith P, Peters G, Barnes DM . (1998). Retinoblastoma and p16 proteins in mammary carcinoma: their relationship to cyclin D1 and histopathological parameters. Int J Cancer 79: 71–75.

    CAS  PubMed  Google Scholar 

  • Emig R, Magener A, Ehemann V, Meyer A, Stilgenbauer F, Volkmann M et al. (1998). Aberrant cytoplasmic expression of the p16 protein in breast cancer is associated with accelerated tumour proliferation. Br J Cancer 78: 1661–1668.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Evangelou K, Bramis J, Peros I, Zacharatos P, Dasiou-Plakida D, Kalogeropoulos N et al. (2004). Electron microscopy evidence that cytoplasmic localization of the p16(INK4A) ‘nuclear’ cyclin-dependent kinase inhibitor (CKI) in tumor cells is specific and not an artifact. A study in non-small cell lung carcinomas. Biotech Histochem 79: 5–10.

    CAS  PubMed  Google Scholar 

  • Fahraeus R, Lane DP . (1999). The p16(INK4a) tumour suppressor protein inhibits alphavbeta3 integrin-mediated cell spreading on vitronectin by blocking PKC-dependent localization of alphavbeta3 to focal contacts. EMBO J 18: 2106–2118.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer CA, Zlobec I, Green E, Probst S, Storck C, Lugli A et al. (2010). Is the improved prognosis of p16 positive oropharyngeal squamous cell carcinoma dependent of the treatment modality? Int J Cancer 126: 1256–1262.

    CAS  PubMed  Google Scholar 

  • Fordyce C, Fessenden T, Pickering C, Jung J, Singla V, Berman H et al. (2010). DNA damage drives an activin a-dependent induction of cyclooxygenase-2 in premalignant cells and lesions. Cancer Prev Res (Phila) 3: 190–201.

    CAS  Google Scholar 

  • Fukushima N, Sato N, Ueki T, Rosty C, Walter KM, Wilentz RE et al. (2002). Aberrant methylation of preproenkephalin and p16 genes in pancreatic intraepithelial neoplasia and pancreatic ductal adenocarcinoma. Am J Pathol 160: 1573–1581.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia V, Silva J, Dominguez G, Garcia JM, Pena C, Rodriguez R et al. (2004). Overexpression of p16INK4a correlates with high expression of p73 in breast carcinomas. Mutat Res 554: 215–221.

    CAS  PubMed  Google Scholar 

  • Ghiorzo P, Pastorino L, Bonelli L, Cusano R, Nicora A, Zupo S et al. (2004). INK4/ARF germline alterations in pancreatic cancer patients. Ann Oncol 15: 70–78.

    CAS  PubMed  Google Scholar 

  • Gil J, Peters G . (2006). Regulation of the INK4b-ARF-INK4a tumour suppressor locus: all for one or one for all. Nat Rev Mol Cell Biol 7: 667–677.

    CAS  PubMed  Google Scholar 

  • Gonzalez S, Serrano M . (2006). A new mechanism of inactivation of the INK4/ARF locus. Cell Cycle 5: 1382–1384.

    CAS  PubMed  Google Scholar 

  • Gorgoulis VG, Zacharatos P, Kotsinas A, Liloglou T, Kyroudi A, Veslemes M et al. (1998). Alterations of the p16-pRb pathway and the chromosome locus 9p21-22 in non-small-cell lung carcinomas: relationship with p53 and MDM2 protein expression. Am J Pathol 153: 1749–1765.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gray-Schopfer VC, Cheong SC, Chong H, Chow J, Moss T, Abdel-Malek ZA et al. (2006). Cellular senescence in naevi and immortalisation in melanoma: a role for p16? Br J Cancer 95: 496–505.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guenova M, Rassidakis GZ, Gorgoulis VG, Angelopoulou MK, Siakantaris MR, Kanavaros P et al. (1999). p16INK4A is regularly expressed in Hodgkin's disease: comparison with retinoblastoma, p53 and MDM2 protein status, and the presence of Epstein-Barr virus. Mod Pathol 12: 1062–1071.

    CAS  PubMed  Google Scholar 

  • Guida M, Sanguedolce F, Bufo P, Di Spiezio Sardo A, Bifulco G, Nappi C et al. (2009). Aberrant DNA hypermethylation of hMLH-1 and CDKN2A/p16 genes in benign, premalignant and malignant endometrial lesions. Eur J Gynaecol Oncol 30: 267–270.

    CAS  PubMed  Google Scholar 

  • Gump J, Stokoe D, McCormick F . (2003). Phosphorylation of p16INK4A correlates with Cdk4 association. J Biol Chem 278: 6619–6622.

    CAS  PubMed  Google Scholar 

  • Gupta AK, Lee JH, Wilke WW, Quon H, Smith G, Maity A et al. (2009). Radiation response in two HPV-infected head-and-neck cancer cell lines in comparison to a non-HPV-infected cell line and relationship to signaling through AKT. Int J Radiat Oncol Biol Phys 74: 928–933.

    PubMed  PubMed Central  Google Scholar 

  • Haller F, Agaimy A, Cameron S, Beyer M, Gunawan B, Happel N et al. (2010). Expression of p16INK4A in gastrointestinal stromal tumours (GISTs): two different forms exist that independently correlate with poor prognosis. Histopathology 56: 305–318.

    PubMed  Google Scholar 

  • Hara E, Smith R, Parry D, Tahara H, Stone S, Peters G . (1996). Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence. Mol Cell Biol 16: 859–867.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harada H, Nakagawa K, Iwata S, Saito M, Kumon Y, Sakaki S et al. (1999). Restoration of wild-type p16 down-regulates vascular endothelial growth factor expression and inhibits angiogenesis in human gliomas. Cancer Res 59: 3783–3789.

    CAS  PubMed  Google Scholar 

  • Hayflick L . (1965). The limited in vitro lifetime of human diploid cell strains. Exp Cell Res 37: 614–636.

    CAS  PubMed  Google Scholar 

  • Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE et al. (1995). Inactivation of the CDKN2/p16/MTS1 gene is frequently associated with aberrant DNA methylation in all common human cancers. Cancer Res 55: 4525–4530.

    CAS  PubMed  Google Scholar 

  • Herschkowitz JI, He X, Fan C, Perou CM . (2008). The functional loss of the retinoblastoma tumour suppressor is a common event in basal-like and luminal B breast carcinomas. Breast Cancer Res 10: R75.

    PubMed  PubMed Central  Google Scholar 

  • Hilliard NJ, Krahl D, Sellheyer K . (2009). p16 expression differentiates between desmoplastic Spitz nevus and desmoplastic melanoma. J Cutan Pathol 36: 753–759.

    PubMed  Google Scholar 

  • Hiroyasu M, Ozeki M, Kohda H, Echizenya M, Tanaka T, Hiai H et al. (2002). Specific allelic loss of p16 (INK4A) tumor suppressor gene after weeks of iron-mediated oxidative damage during rat renal carcinogenesis. Am J Pathol 160: 419–424.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horree N, van Diest PJ, Sie-Go DM, Heintz AP . (2007). The invasive front in endometrial carcinoma: higher proliferation and associated derailment of cell cycle regulators. Hum Pathol 38: 1232–1238.

    CAS  PubMed  Google Scholar 

  • Hruban RH, Klein AP, Eshleman JR, Axilbund JE, Goggins M . (2007). Familial pancreatic cancer: from genes to improved patient care. Expert Rev Gastroenterol Hepatol 1: 81–88.

    CAS  PubMed  Google Scholar 

  • Huang PS, Patrick DR, Edwards G, Goodhart PJ, Huber HE, Miles L et al. (1993). Protein domains governing interactions between E2F, the retinoblastoma gene product, and human papillomavirus type 16 E7 protein. Mol Cell Biol 13: 953–960.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanova TA, Golovina DA, Zavalishina LE, Volgareva GM, Katargin AN, Andreeva YY et al. (2007). Up-regulation of expression and lack of 5′ CpG island hypermethylation of p16 INK4a in HPV-positive cervical carcinomas. BMC Cancer 7: 47.

    PubMed  PubMed Central  Google Scholar 

  • Jung A, Schrauder M, Oswald U, Knoll C, Sellberg P, Palmqvist R et al. (2001). The invasion front of human colorectal adenocarcinomas shows co-localization of nuclear beta-catenin, cyclin D1, and p16INK4A and is a region of low proliferation. Am J Pathol 159: 1613–1617.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kannengiesser C, Brookes S, del Arroyo AG, Pham D, Bombled J, Barrois M et al. (2009). Functional, structural, and genetic evaluation of 20 CDKN2A germ line mutations identified in melanoma-prone families or patients. Hum Mutat 30: 564–574.

    CAS  PubMed  Google Scholar 

  • Kataoka M, Wiehle S, Spitz F, Schumacher G, Roth JA, Cristiano RJ . (2000). Down-regulation of bcl-2 is associated with p16INK4-mediated apoptosis in non-small cell lung cancer cells. Oncogene 19: 1589–1595.

    CAS  PubMed  Google Scholar 

  • Katsuda K, Kataoka M, Uno F, Murakami T, Kondo T, Roth JA et al. (2002). Activation of caspase-3 and cleavage of Rb are associated with p16-mediated apoptosis in human non-small cell lung cancer cells. Oncogene 21: 2108–2113.

    CAS  PubMed  Google Scholar 

  • Kerlikowske K, Molinaro AM, Gauthier ML, Berman HK, Waldman F, Bennington J et al. (2010). Biomarker expression and risk of subsequent tumors after initial ductal carcinoma in situ diagnosis. J Natl Cancer Inst 102: 627–637.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Jonasch E, Alexander A, Short JD, Cai S, Wen S et al. (2009). Cytoplasmic sequestration of p27 via AKT phosphorylation in renal cell carcinoma. Clin Cancer Res 15: 81–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kourea HP, Orlow I, Scheithauer BW, Cordon-Cardo C, Woodruff JM . (1999). Deletions of the INK4A gene occur in malignant peripheral nerve sheath tumors but not in neurofibromas. Am J Pathol 155: 1855–1860.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krishnamurthy J, Torrice C, Ramsey MR, Kovalev GI, Al-Regaiey K, Su L et al. (2004). Ink4a/Arf expression is a biomarker of aging. J Clin Invest 114: 1299–1307.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ksiazek K, Piwocka K, Brzezinska A, Sikora E, Zabel M, Breborowicz A et al. (2006). Early loss of proliferative potential of human peritoneal mesothelial cells in culture: the role of p16INK4a-mediated premature senescence. J Appl Physiol 100: 988–995.

    PubMed  Google Scholar 

  • Lam AK, Ong K, Giv MJ, Ho YH . (2008). p16 expression in colorectal adenocarcinoma: marker of aggressiveness and morphological types. Pathology 40: 580–585.

    CAS  PubMed  Google Scholar 

  • Lassen P, Eriksen JG, Hamilton-Dutoit S, Tramm T, Alsner J, Overgaard J . (2009). Effect of HPV-associated p16INK4A expression on response to radiotherapy and survival in squamous cell carcinoma of the head and neck. J Clin Oncol 27: 1992–1998.

    CAS  PubMed  Google Scholar 

  • Li L, Lu Y . (2010). Inhibition of hypoxia-induced cell motility by p16 in MDA-MB-231 breast cancer cells. J Cancer 1: 126–135.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lleonart ME, Artero-Castro A, Kondoh H . (2009). Senescence induction; a possible cancer therapy. Mol Cancer 8: 3.

    PubMed  PubMed Central  Google Scholar 

  • Lobo GP, Waite KA, Planchon SM, Romigh T, Houghton JA, Eng C . (2008). ATP modulates PTEN subcellular localization in multiple cancer cell lines. Hum Mol Genet 17: 2877–2885.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Vicente L, Armengol G, Pons B, Coch L, Argelaguet E, Lleonart M et al. (2009). Regulation of replicative and stress-induced senescence by RSK4, which is down-regulated in human tumors. Clin Cancer Res 15: 4546–4553.

    CAS  PubMed  Google Scholar 

  • Lynch BC, Lathrop SL, Ye D, Ma TY, Cerilli LA . (2008). Expression of the p16(INK4a) gene product in premalignant and malignant epithelial lesions of the gallbladder. Ann Diagn Pathol 12: 161–164.

    PubMed  Google Scholar 

  • Magnusson S, Borg A, Kristoffersson U, Nilbert M, Wiebe T, Olsson H . (2008). Higher occurrence of childhood cancer in families with germline mutations in BRCA2, MMR and CDKN2A genes. Fam Cancer 7: 331–337.

    CAS  PubMed  Google Scholar 

  • Marchan S, Perez-Torras S, Vidal A, Adan J, Mitjans F, Carbo N et al. (2010). Dual effects of beta3 integrin subunit expression on human pancreatic cancer models. Anal Cell Pathol (Amst) 33: 191–205.

    CAS  Google Scholar 

  • Marsh KL, Varley JM . (1998). Frequent alterations of cell cycle regulators in early-stage breast lesions as detected by immunohistochemistry. Br J Cancer 77: 1460–1468.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin A, Baran-Marzak F, El Mansouri S, Legendre C, Leblond V, Charlotte F et al. (2000). Expression of p16/INK4a in posttransplantation lymphoproliferative disorders. Am J Pathol 156: 1573–1579.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS, Denoyelle C, Kuilman T, van der Horst CM et al. (2005). BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436: 720–724.

    CAS  PubMed  Google Scholar 

  • Milde-Langosch K, Bamberger AM, Rieck G, Kelp B, Loning T . (2001). Overexpression of the p16 cell cycle inhibitor in breast cancer is associated with a more malignant phenotype. Breast Cancer Res Treat 67: 61–70.

    CAS  PubMed  Google Scholar 

  • Minami R, Muta K, Umemura T, Motomura S, Abe Y, Nishimura J et al. (2003). p16(INK4a) induces differentiation and apoptosis in erythroid lineage cells. Exp Hematol 31: 355–362.

    CAS  PubMed  Google Scholar 

  • Modesitt SC, Ramirez P, Zu Z, Bodurka-Bevers D, Gershenson D, Wolf JK . (2001). In vitro and in vivo adenovirus-mediated p53 and p16 tumor suppressor therapy in ovarian cancer. Clin Cancer Res 7: 1765–1772.

    CAS  PubMed  Google Scholar 

  • Monnerat C, Chompret A, Kannengiesser C, Avril MF, Janin N, Spatz A et al. (2007). BRCA1, BRCA2, TP53, and CDKN2A germline mutations in patients with breast cancer and cutaneous melanoma. Fam Cancer 6: 453–461.

    CAS  PubMed  Google Scholar 

  • Moore PS, Orlandini S, Zamboni G, Capelli P, Rigaud G, Falconi M et al. (2001a). Pancreatic tumours: molecular pathways implicated in ductal cancer are involved in ampullary but not in exocrine nonductal or endocrine tumorigenesis. Br J Cancer 84: 253–262.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moore PS, Sipos B, Orlandini S, Sorio C, Real FX, Lemoine NR et al. (2001b). Genetic profile of 22 pancreatic carcinoma cell lines. Analysis of K-ras, p53, p16 and DPC4/Smad4. Virchows Arch 439: 798–802.

    CAS  PubMed  Google Scholar 

  • Mulvany NJ, Allen DG, Wilson SM . (2008). Diagnostic utility of p16INK4a: a reappraisal of its use in cervical biopsies. Pathology 40: 335–344.

    CAS  PubMed  Google Scholar 

  • Munger K, Werness BA, Dyson N, Phelps WC, Harlow E, Howley PM . (1989). Complex formation of human papillomavirus E7 proteins with the retinoblastoma tumor suppressor gene product. EMBO J 8: 4099–4105.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Natarajan E, Saeb M, Crum CP, Woo SB, McKee PH, Rheinwald JG . (2003). Co-expression of p16(INK4A) and laminin 5 gamma2 by microinvasive and superficial squamous cell carcinomas in vivo and by migrating wound and senescent keratinocytes in culture. Am J Pathol 163: 477–491.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen GP, Stemmer-Rachamimov AO, Ino Y, Moller MB, Rosenberg AE, Louis DN . (1999). Malignant transformation of neurofibromas in neurofibromatosis 1 is associated with CDKN2A/p16 inactivation. Am J Pathol 155: 1879–1884.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nilsson K, Landberg G . (2006). Subcellular localization, modification and protein complex formation of the cdk-inhibitor p16 in Rb-functional and Rb-inactivated tumor cells. Int J Cancer 118: 1120–1125.

    CAS  PubMed  Google Scholar 

  • Nilsson K, Svensson S, Landberg G . (2004). Retinoblastoma protein function and p16INK4a expression in actinic keratosis, squamous cell carcinoma in situ and invasive squamous cell carcinoma of the skin and links between p16INK4a expression and infiltrative behavior. Mod Pathol 17: 1464–1474.

    CAS  PubMed  Google Scholar 

  • O'Neill CJ, McBride HA, Connolly LE, McCluggage WG . (2007). Uterine leiomyosarcomas are characterized by high p16, p53 and MIB1 expression in comparison with usual leiomyomas, leiomyoma variants and smooth muscle tumours of uncertain malignant potential. Histopathology 50: 851–858.

    CAS  PubMed  Google Scholar 

  • Ohtani N, Brennan P, Gaubatz S, Sanij E, Hertzog P, Wolvetang E et al. (2003). Epstein-Barr virus LMP1 blocks p16INK4a-RB pathway by promoting nuclear export of E2F4/5. J Cell Biol 162: 173–183.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Orlow I, Begg CB, Cotignola J, Roy P, Hummer AJ, Clas BA et al. (2007). CDKN2A germline mutations in individuals with cutaneous malignant melanoma. J Invest Dermatol 127: 1234–1243.

    CAS  PubMed  Google Scholar 

  • Palmqvist R, Rutegard JN, Bozoky B, Landberg G, Stenling R . (2000). Human colorectal cancers with an intact p16/cyclin D1/pRb pathway have up-regulated p16 expression and decreased proliferation in small invasive tumor clusters. Am J Pathol 157: 1947–1953.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Passegue E, Wagner EF . (2000). JunB suppresses cell proliferation by transcriptional activation of p16(INK4a) expression. EMBO J 19: 2969–2979.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Paulson TG, Galipeau PC, Xu L, Kissel HD, Li X, Blount PL et al. (2008). p16 mutation spectrum in the premalignant condition Barrett's esophagus. PLoS One 3: e3809.

    PubMed  PubMed Central  Google Scholar 

  • Pei XH, Xiong Y . (2005). Biochemical and cellular mechanisms of mammalian CDK inhibitors: a few unresolved issues. Oncogene 24: 2787–2795.

    CAS  PubMed  Google Scholar 

  • Perrone F, Tabano S, Colombo F, Dagrada G, Birindelli S, Gronchi A et al. (2003). p15INK4b, p14ARF, and p16INK4a inactivation in sporadic and neurofibromatosis type 1-related malignant peripheral nerve sheath tumors. Clin Cancer Res 9: 4132–4138.

    CAS  PubMed  Google Scholar 

  • Quereda V, Martinalbo J, Dubus P, Carnero A, Malumbres M . (2007). Genetic cooperation between p21Cip1 and INK4 inhibitors in cellular senescence and tumor suppression. Oncogene 26: 7665–7674.

    CAS  PubMed  Google Scholar 

  • Ressler S, Bartkova J, Niederegger H, Bartek J, Scharffetter-Kochanek K, Jansen-Durr P et al. (2006). p16INK4A is a robust in vivo biomarker of cellular aging in human skin. Aging Cell 5: 379–389.

    CAS  PubMed  Google Scholar 

  • Reuschenbach M, Waterboer T, Wallin KL, Einenkel J, Dillner J, Hamsikova E et al. (2008). Characterization of humoral immune responses against p16, p53, HPV16 E6 and HPV16 E7 in patients with HPV-associated cancers. Int J Cancer 123: 2626–2631.

    CAS  PubMed  Google Scholar 

  • Romagosa C, Simonetti S, Serrano C, López-Vicente L, Esquinas M, Moliné T et al. (2009). Senescence markers in Schwannomas. Virchows Archiv 455: 372.

    Google Scholar 

  • Ruas M, Gregory F, Jones R, Poolman R, Starborg M, Rowe J et al. (2007). CDK4 and CDK6 delay senescence by kinase-dependent and p16INK4a-independent mechanisms. Mol Cell Biol 27: 4273–4282.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rutter JL, Goldstein AM, Davila MR, Tucker MA, Struewing JP . (2003). CDKN2A point mutations D153spl(c.457G>T) and IVS2+1G>T result in aberrant splice products affecting both p16INK4a and p14ARF. Oncogene 22: 4444–4448.

    CAS  PubMed  Google Scholar 

  • Sabah M, Cummins R, Leader M, Kay E . (2006). Loss of p16 (INK4A) expression is associated with allelic imbalance/loss of heterozygosity of chromosome 9p21 in microdissected malignant peripheral nerve sheath tumors. Appl Immunohistochem Mol Morphol 14: 97–102.

    PubMed  Google Scholar 

  • Sanchez-Beato M, Camacho FI, Martinez-Montero JC, Saez AI, Villuendas R, Sanchez-Verde L et al. (1999). Anomalous high p27/KIP1 expression in a subset of aggressive B-cell lymphomas is associated with cyclin D3 overexpression. p27/KIP1-cyclin D3 colocalization in tumor cells. Blood 94: 765–772.

    CAS  PubMed  Google Scholar 

  • Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM et al. (2002). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell 109: 335–346.

    CAS  PubMed  Google Scholar 

  • Schmitt E, Paquet C, Beauchemin M, Bertrand R . (2007). DNA-damage response network at the crossroads of cell-cycle checkpoints, cellular senescence and apoptosis. J Zhejiang Univ Sci B 8: 377–397.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider-Stock R, Boltze C, Lasota J, Peters B, Corless CL, Ruemmele P et al. (2005). Loss of p16 protein defines high-risk patients with gastrointestinal stromal tumors: a tissue microarray study. Clin Cancer Res 11: 638–645.

    CAS  PubMed  Google Scholar 

  • Schwabe M, Lubbert M . (2007). Epigenetic lesions in malignant melanoma. Curr Pharm Biotechnol 8: 382–387.

    CAS  PubMed  Google Scholar 

  • Schwartz B, Avivi-Green C, Polak-Charcon S . (1998). Sodium butyrate induces retinoblastoma protein dephosphorylation, p16 expression and growth arrest of colon cancer cells. Mol Cell Biochem 188: 21–30.

    CAS  PubMed  Google Scholar 

  • Serrano C, Simonetti S, Hernandez J, Valverde C, Carles J, Baguer S et al. (2010). BRAF V600E mutations in benign and malignant peripheral nerve sheath tumors. J Clin Oncology 28 (Suppl): abstract 10043.

    Google Scholar 

  • Serrano M . (1997). The tumor suppressor protein p16INK4a. Exp Cell Res 237: 7–13.

    CAS  PubMed  Google Scholar 

  • Serrano M . (2007). Cancer regression by senescence. N Engl J Med 356: 1996–1997.

    CAS  PubMed  Google Scholar 

  • Shen WW, Wu J, Cai L, Liu BY, Gao Y, Chen GQ et al. (2007). Expression of anion exchanger 1 sequestrates p16 in the cytoplasm in gastric and colonic adenocarcinoma. Neoplasia 9: 812–819.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Souza-Rodrigues E, Estanyol JM, Friedrich-Heineken E, Olmedo E, Vera J, Canela N et al. (2007). Proteomic analysis of p16ink4a-binding proteins. Proteomics 7: 4102–4111.

    CAS  PubMed  Google Scholar 

  • Steigen SE, Bjerkehagen B, Haugland HK, Nordrum IS, Loberg EM, Isaksen V et al. (2008). Diagnostic and prognostic markers for gastrointestinal stromal tumors in Norway. Mod Pathol 21: 46–53.

    CAS  PubMed  Google Scholar 

  • Svensson S, Nilsson K, Ringberg A, Landberg G . (2003). Invade or proliferate? Two contrasting events in malignant behavior governed by p16(INK4a) and an intact Rb pathway illustrated by a model system of basal cell carcinoma. Cancer Res 63: 1737–1742.

    CAS  PubMed  Google Scholar 

  • Tanaka T, Iwasa Y, Kondo S, Hiai H, Toyokuni S . (1999). High incidence of allelic loss on chromosome 5 and inactivation of p15INK4B and p16INK4A tumor suppressor genes in oxystress-induced renal cell carcinoma of rats. Oncogene 18: 3793–3797.

    CAS  PubMed  Google Scholar 

  • Ueki K, Ono Y, Henson JW, Efird JT, von Deimling A, Louis DN . (1996). CDKN2/p16 or RB alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res 56: 150–153.

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhang Z, Lubet R, You M . (2005). Tobacco smoke-induced lung tumorigenesis in mutant A/J mice with alterations in K-ras, p53, or Ink4a/Arf. Oncogene 24: 3042–3049.

    CAS  PubMed  Google Scholar 

  • Weber JD, Jeffers JR, Rehg JE, Randle DH, Lozano G, Roussel MF et al. (2000). p53-independent functions of the p19(ARF) tumor suppressor. Genes Dev 14: 2358–2365.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Xue L, Weng M, Sun Y, Zhang Z, Wang W et al. (2007). Sp1 is essential for p16 expression in human diploid fibroblasts during senescence. PLoS One 2: e164.

    PubMed  PubMed Central  Google Scholar 

  • Yogev O, Anzi S, Inoue K, Shaulian E . (2006). Induction of transcriptionally active Jun proteins regulates drug-induced senescence. J Biol Chem 281: 34475–34483.

    CAS  PubMed  Google Scholar 

  • Zhang Z, Rosen DG, Yao JL, Huang J, Liu J . (2006). Expression of p14ARF, p15INK4b, p16INK4a, and DCR2 increases during prostate cancer progression. Mod Pathol 19: 1339–1343.

    CAS  PubMed  Google Scholar 

  • Zhao P, Mao X, Talbot IC . (2006). Aberrant cytological localization of p16 and CDK4 in colorectal epithelia in the normal adenoma carcinoma sequence. World J Gastroenterol 12: 6391–6396.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu D, Xu G, Ghandhi S, Hubbard K . (2002). Modulation of the expression of p16INK4a and p14ARF by hnRNP A1 and A2 RNA binding proteins: implications for cellular senescence. J Cell Physiol 193: 19–25.

    CAS  PubMed  Google Scholar 

  • Zindy F, Quelle DE, Roussel MF, Sherr CJ . (1997). Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15: 203–211.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to M Serrano for his careful reading and suggestions, and C Cavallo and S Illing for English editing. SRC is supported by grants from the ‘Fondo de Investigaciones Sanitarias’ (Ref.05/0818 and 08/0143), ‘Fundació Marató TV3’ (Ref.052710), ‘Mutua Madrileña’ (FMMA/2009/02), ‘Redes temáticas de Investigación Cooperativa en Salud’ (Ref.RD06/0020/0104 and RD06/0020/1020) and ‘Generalitat de Catalunya’ (Ref.2005SGR00144), AM is supported by grants from the ‘Ministerio de Ciencia y Tecnología (Ref. BIO2008-04692-C03-03) and Generalitat de Catalunya (Ref 2009SGR624), and CR is supported by a grant from the ‘Grupo español de Investigación en Sarcomas’ (Ref.GEIS/2008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Ramon y Cajal.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romagosa, C., Simonetti, S., López-Vicente, L. et al. p16Ink4a overexpression in cancer: a tumor suppressor gene associated with senescence and high-grade tumors. Oncogene 30, 2087–2097 (2011). https://doi.org/10.1038/onc.2010.614

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.614

Keywords

This article is cited by

Search

Quick links