Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The fungicide ciclopirox inhibits lymphatic endothelial cell tube formation by suppressing VEGFR-3-mediated ERK signaling pathway

Abstract

Ciclopirox olamine (CPX), an off-patent antifungal agent used to treat mycoses of skin and nails, has recently been demonstrated to be a potential anticancer agent. However, the underlying mechanism is not well understood. Here, for the first time, we show that CPX inhibited lymphangiogenesis in an in vitro model (tube formation). This effect was, in part, associated with inhibition of vascular endothelial growth factor receptor-3 (VEGFR-3) expression, as overexpression of VEGFR-3 conferred partial resistance to CPX inhibitory effect on tube formation in lymphatic endothelial cells (LECs), whereas downregulation of VEGFR-3 mimicked the effect of CPX, blocking the tube formation. Further study revealed that CPX did not alter mRNA level, but inhibited protein synthesis and promoted protein degradation of VEGFR-3. In addition, we found that CPX inhibited phosphorylation of the extracellular signal-related kinase 1/2 (ERK1/2), a downstream effector of VEGFR-3. Overexpression of VEGFR-3 attenuated CPX inhibition of ERK1/2 phosphorylation, whereas downregulation of VEGFR-3 inhibited ERK1/2 phosphorylation in LECs. Ectopic expression of constitutively active mitogen-activated protein kinase kinase 1 (MKK1) resulted in activation of ERK1/2 and partially prevented CPX inhibition of LEC tube formation. The results suggest that CPX inhibits LEC tube formation at least, in part, through inhibiting VEGFR-3-mediated ERK signaling pathway.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alitalo K, Carmeliet P . (2002). Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1: 219–227.

    Article  CAS  PubMed  Google Scholar 

  • Ando T, Jordan P, Joh T, Wang Y, Jennings MH, Houghton J et al. (2005). Isolation and characterization of a novel mouse lymphatic endothelial cell line: SV-LEC. Lymphat Res Biol 3: 105–115.

    Article  CAS  PubMed  Google Scholar 

  • Clement PM, Hanauske-Abel HM, Wolff EC, Kleinman HK, Park MH . (2002). The antifungal drug ciclopirox inhibits deoxyhypusine and proline hydroxylation, endothelial cell growth and angiogenesis in vitro. Int J Cancer 100: 491–498.

    Article  CAS  PubMed  Google Scholar 

  • Cueni LN, Detmar M . (2006). New insights into the molecular control of the lymphatic vascular system and its role in disease. J Invest Dermatol 126: 2167–2177.

    Article  CAS  PubMed  Google Scholar 

  • Dittmar W, Lohaus G . (1973). HOE 296, a new antimycotic compound with a broad antimicrobial spectrum. Laboratory results. Arzneimittelforschung 23: 670–674.

    CAS  PubMed  Google Scholar 

  • Dixelius J, Makinen T, Wirzenius M, Karkkainen MJ, Wernstedt C, Alitalo K et al. (2003). Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J Biol Chem 278: 40973–40979.

    Article  CAS  PubMed  Google Scholar 

  • Eberhard Y, McDermott SP, Wang X, Gronda M, Venugopal A, Wood TE et al. (2009). Chelation of intracellular iron with the antifungal agent ciclopirox olamine induces cell death in leukemia and myeloma cells. Blood 114: 3064–3073.

    Article  CAS  PubMed  Google Scholar 

  • Fang C, Miguel MA, Avis I, Martinez A, Zudaire E, Cuttitta F . (2009). Non-peptide small molecule regulators of lymphangiogenesis. Lymphat Res Biol 7: 189–196.

    Article  CAS  PubMed  Google Scholar 

  • Fournier E, Blaikie P, Rosnet O, Margolis B, Birnbaum D, Borg JP . (1999). Role of tyrosine residues and protein interaction domains of SHC adaptor in VEGF receptor 3 signaling. Oncogene 18: 507–514.

    Article  CAS  PubMed  Google Scholar 

  • Fritz-Six KL, Dunworth WP, Li M, Caron KM . (2008). Adrenomedullin signaling is necessary for murine lymphatic vascular development. J Clin Invest 118: 40–50.

    Article  CAS  PubMed  Google Scholar 

  • He Y, Kozaki K, Karpanen T, Koshikawa K, Yla-Herttuala S, Takahashi T et al. (2002). Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 94: 819–825.

    Article  CAS  PubMed  Google Scholar 

  • He Y, Rajantie I, Pajusola K, Jeltsch M, Holopainen T, Yla-Herttuala S et al. (2005). Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res 65: 4739–4746.

    Article  CAS  PubMed  Google Scholar 

  • Jin D, Harada K, Ohnishi S, Yamahara K, Kangawa K, Nagaya N . (2008). Adrenomedullin induces lymphangiogenesis and ameliorates secondary lymphoedema. Cardiovasc Res 80: 339–345.

    Article  CAS  PubMed  Google Scholar 

  • Jue SG, Dawson GW, Brogden RN . (1985). Ciclopirox olamine 1% cream. A preliminary review of its antimicrobial activity and therapeutic use. Drugs 29: 330–341.

    Article  CAS  PubMed  Google Scholar 

  • Kaipainen A, Korhonen J, Mustonen T, van Hinsbergh VW, Fang GH, Dumont D et al. (1995). Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci USA 92: 3566–3570.

    Article  CAS  PubMed  Google Scholar 

  • Kanellopoulou C, Muljo SA, Kung AL, Ganesan S, Drapkin R, Jenuwein T et al. (2005). Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev 19: 489–501.

    Article  CAS  PubMed  Google Scholar 

  • Karpanen T, Alitalo K . (2008). Molecular biology and pathology of lymphangiogenesis. Annu Rev Pathol 3: 367–397.

    Article  CAS  PubMed  Google Scholar 

  • Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Ylä-Herttuala S, Jäättelä M et al. (2001). Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 61: 1786–1790.

    CAS  PubMed  Google Scholar 

  • Karpanen T, Wirzenius M, Mäkinen T, Veikkola T, Haisma HJ, Achen MG et al. (2006). Lymphangiogenic growth factor responsiveness is modulated by postnatal lymphatic vessel maturation. Am J Pathol 169: 708–718.

    Article  CAS  PubMed  Google Scholar 

  • Kerbel RS, Kamen BA . (2004). The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4: 423–436.

    Article  CAS  PubMed  Google Scholar 

  • Lin J, Lalani AS, Harding TC, Gonzalez M, Wu WW, Luan B et al. (2005). Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res 65: 6901–6909.

    Article  CAS  PubMed  Google Scholar 

  • Linden T, Katschinski DM, Eckhardt K, Scheid A, Pagel H, Wenger RH . (2003). The antimycotic ciclopirox olamine induces HIF-1alpha stability, VEGF expression, and angiogenesis. FASEB J 17: 761–763.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Chen L, Chung J, Huang S . (2008). Rapamycin inhibits F-actin reorganization and phosphorylation of focal adhesion proteins. Oncogene 27: 4998–5010.

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Chen L, Luo Y, Chen W, Zhou H, Xu B et al. (2010). Rapamycin inhibits IGF-1 stimulated cell motility through PP2A pathway. PLoS One 5: e10578.

    Article  PubMed  Google Scholar 

  • Liu L, Li F, Cardelli JA, Martin KA, Blenis J, Huang S . (2006). Rapamycin inhibits cell motility by suppression of mTOR-mediated S6K1 and 4E-BP1 pathways. Oncogene 25: 7029–7040.

    Article  CAS  PubMed  Google Scholar 

  • Mäkinen T, Jussila L, Veikkola T, Karpanen T, Kettunen MI, Pulkkanen KJ et al. (2001a). Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nature Med 7: 199–205.

    Article  PubMed  Google Scholar 

  • Mäkinen T, Veikkola T, Mustjoki S, Karpanen T, Catimel B, Nice EC et al. (2001b). Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J 20: 4762–4773.

    Article  PubMed  Google Scholar 

  • Mandriota SJ, Jussila L, Jeltsch M, Compagni A, Baetens D, Prevo R et al. (2001). Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20: 672–682.

    Article  CAS  PubMed  Google Scholar 

  • Mansour SJ, Matten WT, Hermann AS, Candia JM, Rong S, Fukasawa K et al. (1994). Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265: 966–970.

    Article  CAS  PubMed  Google Scholar 

  • Ming J, Liu N, Gu Y, Qiu X, Wang EH . (2009). PRL-3 facilitates angiogenesis and metastasis by increasing ERK phosphorylation and up-regulating the levels and activities of Rho-A/C in lung cancer. Pathology 41: 118–126.

    Article  CAS  PubMed  Google Scholar 

  • Nisato RE, Harrison JA, Buser R, Orci L, Rinsch C, Montesano R et al. (2004). Generation and characterization of telomerase-transfected human lymphatic endothelial cells with an extended life span. Am J Pathol 165: 11–24.

    Article  CAS  PubMed  Google Scholar 

  • Niewerth M, Kunze D, Seibold M, Schaller M, Korting HC, Hube B . (2003). Ciclopirox olamine treatment affects the expression pattern of Candida albicans genes encoding virulence factors, iron metabolism proteins, and drug resistance factors. Antimicrob Agents Chemother 47: 1805–1817.

    Article  CAS  PubMed  Google Scholar 

  • Pepper MS . (2001). Lymphangiogenesis and tumor metastasis: myth or reality? Clin Cancer Res 7: 462–468.

    CAS  PubMed  Google Scholar 

  • Ruggeri B, Singh J, Gingrich D, Angeles T, Albom M, Yang S et al. (2003). CEP-7055: a novel, orally active pan inhibitor of vascular endothelial growth factor receptor tyrosine kinases with potent antiangiogenic activity and antitumor efficacy in preclinical models. Cancer Res 63: 5978–5991.

    CAS  PubMed  Google Scholar 

  • Salameh A, Galvagni F, Bardelli M, Bussolino F, Oliviero S . (2005). Direct recruitment of CRK and GRB2 to VEGFR-3 induces proliferation, migration, and survival of endothelial cells through the activation of ERK, AKT, and JNK pathways. Blood 106: 3423–3431.

    Article  CAS  PubMed  Google Scholar 

  • Schacht V, Ramirez MI, Hong YK, Hirakawa S, Feng D, Harvey N et al. (2003). T1alpha/podoplanin deficiency disrupts normal lymphatic vasculature formation and causes lymphedema. EMBO J 22: 3546–3556.

    Article  CAS  PubMed  Google Scholar 

  • Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P et al. (2001). Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7: 192–198.

    Article  CAS  PubMed  Google Scholar 

  • Sigle HC, Thewes S, Niewerth M, Korting HC, Schafer-Korting M, Hube B . (2005). Oxygen accessibility and iron levels are critical factors for the antifungal action of ciclopirox against Candida albicans. J Antimicrob Chemother 55: 663–673.

    Article  CAS  PubMed  Google Scholar 

  • Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R et al. (2001). VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7: 186–191.

    Article  CAS  PubMed  Google Scholar 

  • Su JL, Yang PC, Shih JY, Yang CY, Wei LH, Hsieh CY et al. (2006). The VEGF-C/Flt-4 axis promotes invasion and metastasis of cancer cells. Cancer Cell 9: 209–223.

    Article  CAS  PubMed  Google Scholar 

  • Sunavala-Dossabhoy G, Fowler M, De Benedetti A . (2004). Translation of the radioresistance kinase TLK1B is induced by gamma-irradiation through activation of mTOR and phosphorylation of 4E-BP1. BMC Mol Biol 5: 1.

    Article  PubMed  Google Scholar 

  • Wissmann C, Detmar M . (2006). Pathways targeting tumor lymphangiogenesis. Clin Cancer Res 12: 6865–6868.

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Shen T, Luo Y, Liu L, Chen W, Xu B et al. (2010). The antitumor activity of the fungicide ciclopirox. Int J Cancer 127: 2467–2477.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported, in part, by the NIH grant CA115414 (SH), Louisiana Board of Regents grant (LEQSF (2006–09)-RD-A-18) (SH), and American Cancer Society grant RSG-08-135-01-CNE (SH). We thank Dr Natalie Ahn for providing MKK1 constructs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Huang.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, Y., Zhou, H., Liu, L. et al. The fungicide ciclopirox inhibits lymphatic endothelial cell tube formation by suppressing VEGFR-3-mediated ERK signaling pathway. Oncogene 30, 2098–2107 (2011). https://doi.org/10.1038/onc.2010.590

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.590

Keywords

This article is cited by

Search

Quick links