Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genome-wide shRNA screen reveals increased mitochondrial dependence upon mTORC2 addiction

Abstract

Release from growth factor dependence and acquisition of signalling pathway addiction are critical steps in oncogenesis. To identify genes required on mammalian target of rapamycin (mTOR) addiction, we performed a genome-wide short hairpin RNA screen on a v-H-ras-transformed Pten-deficient cell line that displayed two alternative growth modes, interleukin (IL)-3-independent/mTOR-addicted proliferation (transformed growth mode) and IL-3-dependent/mTOR-non-addicted proliferation (normal growth mode). We screened for genes required only in the absence of IL-3 and thus specifically for the transformed growth mode. The top 800 hits from this conditional lethal screen were analyzed in silico and 235 hits were subsequently rescreened in two additional Pten-deficient cell lines to generate a core set of 47 genes. Hits included genes encoding mTOR and the mTOR complex 2 (mTORC2) component rictor and several genes encoding mitochondrial functions including components of the respiratory chain, adenosine triphosphate synthase, the mitochondrial ribosome and mitochondrial fission factor. Small interfering RNA knockdown against a sizeable fraction of these genes triggered apoptosis in human cancer cell lines but not in normal fibroblasts. We conclude that mTORC2-addicted cells require mitochondrial functions that may be novel drug targets in human cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alto NM, Soderling J, Scott JD . (2002). Rab32 is an A-kinase anchoring protein and participates in mitochondrial dynamics. J Cell Biol 158: 659–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay G, Sajan MP, Kanoh Y, Standaert ML, Quon MJ, Reed BC et al. (2001). Glucose activates protein kinase C-zeta/lambda through proline-rich tyrosine kinase-2, extracellular signal-regulated kinase, and phospholipase D: a novel mechanism for activating glucose transporter translocation. J Biol Chem 276: 35537–35545.

    Article  CAS  PubMed  Google Scholar 

  • Bauer DE, Harris MH, Plas DR, Lum JJ, Hammerman PS, Rathmell JC et al. (2004). Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. FASEB J 18: 1303–1305.

    Article  CAS  PubMed  Google Scholar 

  • Bentzinger CF, Romanino K, Cloetta D, Lin S, Mascarenhas JB, Oliveri F et al. (2008). Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab 8: 411–424.

    Article  CAS  PubMed  Google Scholar 

  • Chiang GG, Abraham RT . (2007). Targeting the mTOR signaling network in cancer. Trends Mol Med 13: 433–442.

    Article  CAS  PubMed  Google Scholar 

  • Cunningham JT, Rodgers JT, Arlow DH, Vazquez F, Mootha VK, Puigserver P . (2007). mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 450: 736–740.

    Article  CAS  PubMed  Google Scholar 

  • Dang CV . (2010). p32 (C1QBP) and cancer cell metabolism: is the Warburg effect a lot of hot air? Mol Cell Biol 30: 1300–1302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan Y, Dickman KG, Zong WX . (2010). Akt and c-Myc differentially activate cellular metabolic programs and prime cells to bioenergetic inhibition. J Biol Chem 285: 7324–7333.

    Article  CAS  PubMed  Google Scholar 

  • Fantin VR, Leder P . (2006). Mitochondriotoxic compounds for cancer therapy. Oncogene 25: 4787–4797.

    Article  CAS  PubMed  Google Scholar 

  • Foster DA . (2007). Regulation of mTOR by phosphatidic acid? Cancer Res 67: 1–4.

    Article  CAS  PubMed  Google Scholar 

  • Gandre-Babbe S, van der Bliek AM . (2008). The novel tail-anchored membrane protein Mff controls mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell 19: 2402–2412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonez LJ, Naselli G, Banakh I, Niwa H, Harrison LC . (2008). Pancreatic expression and mitochondrial localization of the progestin-adipoQ receptor PAQR10. Mol Med 14: 697–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandori C, Mac J, Siebelt F, Ayer DE, Eisenman RN . (1996). Myc-Max heterodimers activate a DEAD box gene and interact with multiple E box-related sites in vivo. EMBO J 15: 4344–4357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guertin DA, Sabatini DM . (2007). Defining the role of mTOR in cancer. Cancer Cell 12: 9–22.

    Article  CAS  PubMed  Google Scholar 

  • Heyward CA, Pettitt TR, Leney SE, Welsh GI, Tavare JM, Wakelam MJ . (2008). An intracellular motif of GLUT4 regulates fusion of GLUT4-containing vesicles. BMC Cell Biol 9: 25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hill MM, Clark SF, Tucker DF, Birnbaum MJ, James DE, Macaulay SL . (1999). A role for protein kinase Bbeta/Akt2 in insulin-stimulated GLUT4 translocation in adipocytes. Mol Cell Biol 19: 7771–7781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung HC, Kim K . (2005). Identification of MYCBP as a beta-catenin/LEF-1 target using DNA microarray analysis. Life Sci 77: 1249–1262.

    Article  CAS  PubMed  Google Scholar 

  • Kiser KF, Colombi M, Moroni C . (2006). Isolation and characterization of dominant and recessive IL-3-independent hematopoietic transformants. Oncogene 25: 6595–6603.

    Article  CAS  PubMed  Google Scholar 

  • Lipscomb EA, Sarmiere PD, Freeman RS . (2001). SM-20 is a novel mitochondrial protein that causes caspase-dependent cell death in nerve growth factor-dependent neurons. J Biol Chem 276: 5085–5092.

    Article  CAS  PubMed  Google Scholar 

  • Luo B, Cheung HW, Subramanian A, Sharifnia T, Okamoto M, Yang X et al. (2008). Highly parallel identification of essential genes in cancer cells. Proc Natl Acad Sci USA 105: 20380–20385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo J, Emanuele MJ, Li D, Creighton CJ, Schlabach MR, Westbrook TF et al. (2009). A genome-wide RNAi screen identifies multiple synthetic lethal interactions with the Ras oncogene. Cell 137: 835–848.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM et al. (2004). mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 10: 594–601.

    Article  CAS  PubMed  Google Scholar 

  • Moffat J, Grueneberg DA, Yang X, Kim SY, Kloepfer AM, Hinkle G et al. (2006). A lentiviral RNAi library for human and mouse genes applied to an arrayed viral high-content screen. Cell 124: 1283–1298.

    Article  CAS  PubMed  Google Scholar 

  • Muller BA . (2009). Imatinib and its successors--how modern chemistry has changed drug development. Curr Pharm Des 15: 120–133.

    Article  PubMed  Google Scholar 

  • Murray JT, Campbell DG, Morrice N, Auld GC, Shpiro N, Marquez R et al. (2004). Exploitation of KESTREL to identify NDRG family members as physiological substrates for SGK1 and GSK3. Biochem J 384: 477–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair AP, Hirsch HH, Moroni C . (1992). Mast cells sensitive to v-H-ras transformation are hyperinducible for interleukin 3 expression and have lost tumor-suppressor activity. Oncogene 7: 1963–1972.

    CAS  PubMed  Google Scholar 

  • Nilsson R, Schultz IJ, Pierce EL, Soltis KA, Naranuntarat A, Ward DM et al. (2009). Discovery of genes essential for heme biosynthesis through large-scale gene expression analysis. Cell Metab 10: 119–130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB, Ong SE et al. (2008). A mitochondrial protein compendium elucidates complex I disease biology. Cell 134: 112–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polak P, Cybulski N, Feige JN, Auwerx J, Ruegg MA, Hall MN . (2008). Adipose-specific knockout of raptor results in lean mice with enhanced mitochondrial respiration. Cell Metab 8: 399–410.

    Article  CAS  PubMed  Google Scholar 

  • Pytel D, Sliwinski T, Poplawski T, Ferriola D, Majsterek I . (2009). Tyrosine kinase blockers: new hope for successful cancer therapy. Anticancer Agents Med Chem 9: 66–76.

    Article  CAS  PubMed  Google Scholar 

  • Ramanathan A, Schreiber SL . (2009). Direct control of mitochondrial function by mTOR. Proc Natl Acad Sci USA 106: 22229–22232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Root DE, Hacohen N, Hahn WC, Lander ES, Sabatini DM . (2006). Genome-scale loss-of-function screening with a lentiviral RNAi library. Nat Methods 3: 715–719.

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Nakashima A, Guo L, Coffman K, Tamanoi F . (2010). Single amino-acid changes that confer constitutive activation of mTOR are discovered in human cancer. Oncogene 29: 2746–2752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schieke SM, Phillips D, McCoy Jr JP, Aponte AM, Shen RF, Balaban RS et al. (2006). The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity. J Biol Chem 281: 27643–27652.

    Article  CAS  PubMed  Google Scholar 

  • Schlabach MR, Luo J, Solimini NL, Hu G, Xu Q, Li MZ et al. (2008). Cancer proliferation gene discovery through functional genomics. Science 319: 620–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scholl C, Frohling S, Dunn IF, Schinzel AC, Barbie DA, Kim SY et al. (2009). Synthetic lethal interaction between oncogenic KRAS dependency and STK33 suppression in human cancer cells. Cell 137: 821–834.

    Article  CAS  PubMed  Google Scholar 

  • Solimini NL, Luo J, Elledge SJ . (2007). Non-oncogene addiction and the stress phenotype of cancer cells. Cell 130: 986–988.

    Article  CAS  PubMed  Google Scholar 

  • Soria JC, Lee HY, Lee JI, Wang L, Issa JP, Kemp BL et al. (2002). Lack of PTEN expression in non-small cell lung cancer could be related to promoter methylation. Clin Cancer Res 8: 1178–1184.

    CAS  PubMed  Google Scholar 

  • Thaimattam R, Banerjee R, Miglani R, Iqbal J . (2007). Protein kinase inhibitors: structural insights into selectivity. Curr Pharm Des 13: 2751–2765.

    Article  CAS  PubMed  Google Scholar 

  • van de Wetering M, Oving I, Muncan V, Pon Fong MT, Brantjes H, van Leenen D et al. (2003). Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep 4: 609–615.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Somwar R, Bilan PJ, Liu Z, Jin J, Woodgett JR et al. (1999). Protein kinase B/Akt participates in GLUT4 translocation by insulin in L6 myoblasts. Mol Cell Biol 19: 4008–4018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinberg F, Chandel NS . (2009). Mitochondrial metabolism and cancer. Ann NY Acad Sci 1177: 66–73.

    Article  CAS  PubMed  Google Scholar 

  • Weinberg F, Hamanaka R, Wheaton WW, Weinberg S, Joseph J, Lopez M et al. (2010). Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc Natl Acad Sci USA 107: 8788–8793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al. (2008). Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105: 18782–18787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wittwer AJ, Wagner C . (1980). Identification of folate binding protein of mitochondria as dimethylglycine dehydrogenase. Proc Natl Acad Sci USA 77: 4484–4488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN . (2006). TOR signaling in growth and metabolism. Cell 124: 471–484.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank TW Sturgill for comments and Dr F Wenzel for providing normal human fibroblasts. We acknowledge support from the Commission of Technology and Innovation (CTI) (CM, MNH and UR), the Swiss National Science Foundation (CM and MNH) and the Swiss Cancer League and the Louis-Jeantet Foundation (MNH).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M N Hall or C Moroni.

Ethics declarations

Competing interests

CM is a consultant for Actelion Ltd.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colombi, M., Molle, K., Benjamin, D. et al. Genome-wide shRNA screen reveals increased mitochondrial dependence upon mTORC2 addiction. Oncogene 30, 1551–1565 (2011). https://doi.org/10.1038/onc.2010.539

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.539

Keywords

This article is cited by

Search

Quick links