Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Biological reprogramming in acquired resistance to endocrine therapy of breast cancer

Abstract

Endocrine therapies targeting the proliferative effect of 17β-estradiol through estrogen receptor α (ERα) are the most effective systemic treatment of ERα-positive breast cancer. However, most breast tumors initially responsive to these therapies develop resistance through molecular mechanisms that are not yet fully understood. The long-term estrogen-deprived (LTED) MCF7 cell model has been proposed to recapitulate acquired resistance to aromatase inhibitors in postmenopausal women. To elucidate this resistance, genomic, transcriptomic and molecular data were integrated into the time course of MCF7–LTED adaptation. Dynamic and widespread genomic changes were observed, including amplification of the ESR1 locus consequently linked to an increase in ERα. Dynamic transcriptomic profiles were also observed that correlated significantly with genomic changes and were predicted to be influenced by transcription factors known to be involved in acquired resistance or cell proliferation (for example, interferon regulatory transcription factor 1 and E2F1, respectively) but, notably, not by canonical ERα transcriptional function. Consistently, at the molecular level, activation of growth factor signaling pathways by EGFR/ERBB/AKT and a switch from phospho-Ser118 (pS118)- to pS167-ERα were observed during MCF7–LTED adaptation. Evaluation of relevant clinical settings identified significant associations between MCF7–LTED and breast tumor transcriptome profiles that characterize ERα-negative status, early response to letrozole and tamoxifen, and recurrence after tamoxifen treatment. In accordance with these profiles, MCF7–LTED cells showed increased sensitivity to inhibition of FGFR-mediated signaling with PD173074. This study provides mechanistic insight into acquired resistance to endocrine therapies of breast cancer and highlights a potential therapeutic strategy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Adelaide J, Finetti P, Charafe-Jauffret E, Wicinski J, Jacquemier J, Sotiriou C et al. (2008). Absence of ESR1 amplification in a series of breast cancers. Int J Cancer 123: 2970–2972.

    Article  CAS  PubMed  Google Scholar 

  • Adler AS, Lin M, Horlings H, Nuyten DS, van de Vijver MJ, Chang HY . (2006). Genetic regulators of large-scale transcriptional signatures in cancer. Nat Genet 38: 421–430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahn BY, Elwi AN, Lee B, Trinh DL, Klimowicz AC, Yau A et al. (2010). Genetic screen identifies insulin-like growth factor binding protein 5 as a modulator of tamoxifen resistance in breast cancer. Cancer Res 70: 3013–3019.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez MJ, Sumazin P, Rajbhandari P, Califano A . (2009). Correlating measurements across samples improves accuracy of large-scale expression profile experiments. Genome Biol 10: R143.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Balciunaite E, Spektor A, Lents NH, Cam H, Te Riele H, Scime A et al. (2005). Pocket protein complexes are recruited to distinct targets in quiescent and proliferating cells. Mol Cell Biol 25: 8166–8178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baselga J, Semiglazov V, van Dam P, Manikhas A, Bellet M, Mayordomo J et al. (2009). Phase II randomized study of neoadjuvant everolimus plus letrozole compared with placebo plus letrozole in patients with estrogen receptor-positive breast cancer. J Clin Oncol 27: 2630–2637.

    Article  CAS  PubMed  Google Scholar 

  • Beeram M, Tan QT, Tekmal RR, Russell D, Middleton A, DeGraffenried LA . (2007). Akt-induced endocrine therapy resistance is reversed by inhibition of mTOR signaling. Ann Oncol 18: 1323–1328.

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y . (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc Ser B 57: 289–300.

    Google Scholar 

  • Bouker KB, Skaar TC, Fernandez DR, O'Brien KA, Riggins RB, Cao D et al. (2004). Interferon regulatory factor-1 mediates the proapoptotic but not cell cycle arrest effects of the steroidal antiestrogen ICI 182 780 (faslodex, fulvestrant). Cancer Res 64: 4030–4039.

    Article  CAS  PubMed  Google Scholar 

  • Bowie ML, Dietze EC, Delrow J, Bean GR, Troch MM, Marjoram RJ et al. (2004). Interferon-regulatory factor-1 is critical for tamoxifen-mediated apoptosis in human mammary epithelial cells. Oncogene 23: 8743–8755.

    Article  CAS  PubMed  Google Scholar 

  • Brown LA, Hoog J, Chin SF, Tao Y, Zayed AA, Chin K et al. (2008). ESR1 gene amplification in breast cancer: a common phenomenon? Nat Genet 40: 806–807; author reply 810–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bryne JC, Valen E, Tang MH, Marstrand T, Winther O, da Piedade I et al. (2008). JASPAR, the open access database of transcription factor-binding profiles: new content and tools in the 2008 update. Nucleic Acids Res 36: D102–D106.

    Article  CAS  PubMed  Google Scholar 

  • Campbell RA, Bhat-Nakshatri P, Patel NM, Constantinidou D, Ali S, Nakshatri H . (2001). Phosphatidylinositol 3-kinase/AKT-mediated activation of estrogen receptor α: a new model for anti-estrogen resistance. J Biol Chem 276: 9817–9824.

    Article  CAS  PubMed  Google Scholar 

  • Carroll JS, Meyer CA, Song J, Li W, Geistlinger TR, Eeckhoute J et al. (2006). Genome-wide analysis of estrogen receptor binding sites. Nat Genet 38: 1289–1297.

    Article  CAS  PubMed  Google Scholar 

  • Chan CM, Martin LA, Johnston SR, Ali S, Dowsett M . (2002). Molecular changes associated with the acquisition of oestrogen hypersensitivity in MCF-7 breast cancer cells on long-term oestrogen deprivation. J Steroid Biochem Mol Biol 81: 333–341.

    Article  CAS  PubMed  Google Scholar 

  • Chang JT, Nevins JR . (2006). GATHER: a systems approach to interpreting genomic signatures. Bioinformatics 22: 2926–2933.

    Article  CAS  PubMed  Google Scholar 

  • Chia S, Gradishar W, Mauriac L, Bines J, Amant F, Federico M et al. (2008). Double-blind, randomized placebo controlled trial of fulvestrant compared with exemestane after prior nonsteroidal aromatase inhibitor therapy in postmenopausal women with hormone receptor-positive, advanced breast cancer: results from EFECT. J Clin Oncol 26: 1664–1670.

    Article  CAS  PubMed  Google Scholar 

  • Chlebowski RT, Col N, Winer EP, Collyar DE, Cummings SR, Vogel III VG et al. (2002). American Society of Clinical Oncology technology assessment of pharmacologic interventions for breast cancer risk reduction including tamoxifen, raloxifene, and aromatase inhibition. J Clin Oncol 20: 3328–3343.

    Article  CAS  PubMed  Google Scholar 

  • Clarke R, Liu MC, Bouker KB, Gu Z, Lee RY, Zhu Y et al. (2003). Antiestrogen resistance in breast cancer and the role of estrogen receptor signaling. Oncogene 22: 7316–7339.

    Article  CAS  PubMed  Google Scholar 

  • Dey JH, Bianchi F, Voshol J, Bonenfant D, Oakeley EJ, Hynes NE . (2010). Targeting fibroblast growth factor receptors blocks PI3K/AKT signaling, induces apoptosis, and impairs mammary tumor outgrowth and metastasis. Cancer Res 70: 4151–4162.

    Article  CAS  PubMed  Google Scholar 

  • Dowsett M, Martin LA, Smith I, Johnston S . (2005a). Mechanisms of resistance to aromatase inhibitors. J Steroid Biochem Mol Biol 95: 167–172.

    Article  CAS  PubMed  Google Scholar 

  • Dowsett M, Nicholson RI, Pietras RJ . (2005b). Biological characteristics of the pure antiestrogen fulvestrant: overcoming endocrine resistance. Breast Cancer Res Treat 93 (Suppl 1): S11–S18.

    Article  CAS  PubMed  Google Scholar 

  • Easton DF, Pooley KA, Dunning AM, Pharoah PD, Thompson D, Ballinger DG et al. (2007). Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447: 1087–1093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • EBCTCG (1998). Tamoxifen for early breast cancer: an overview of the randomised trials. Early Breast Cancer Trialists’ Collaborative Group. Lancet 351: 1451–1467.

    Article  Google Scholar 

  • Eeckhoute J, Keeton EK, Lupien M, Krum SA, Carroll JS, Brown M . (2007). Positive cross-regulatory loop ties GATA-3 to estrogen receptor α expression in breast cancer. Cancer Res 67: 6477–6483.

    Article  CAS  PubMed  Google Scholar 

  • Ellis MJ, Tao Y, Young O, White S, Proia AD, Murray J et al. (2006). Estrogen-independent proliferation is present in estrogen-receptor HER2-positive primary breast cancer after neoadjuvant letrozole. J Clin Oncol 24: 3019–3025.

    Article  CAS  PubMed  Google Scholar 

  • Galan-Caridad JM, Harel S, Arenzana TL, Hou ZE, Doetsch FK, Mirny LA et al. (2007). Zfx controls the self-renewal of embryonic and hematopoietic stem cells. Cell 129: 345–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautier L, Cope L, Bolstad BM, Irizarry RA . (2004). affy--analysis of Affymetrix GeneChip data at the probe level. Bioinformatics 20: 307–315.

    Article  CAS  PubMed  Google Scholar 

  • Geisler J, Haynes B, Anker G, Dowsett M, Lonning PE . (2002). Influence of letrozole and anastrozole on total body aromatization and plasma estrogen levels in postmenopausal breast cancer patients evaluated in a randomized, cross-over study. J Clin Oncol 20: 751–757.

    Article  CAS  PubMed  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S et al. (2004). Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5: R80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghayad SE, Vendrell JA, Larbi SB, Dumontet C, Bieche I, Cohen PA . (2009). Endocrine resistance associated with activated ErbB system in breast cancer cells is reversed by inhibiting MAPK or PI3K/Akt signaling pathways. Int J Cancer 126: 545–562.

    Article  CAS  Google Scholar 

  • Gu Z, Lee RY, Skaar TC, Bouker KB, Welch JN, Lu J et al. (2002). Association of interferon regulatory factor-1, nucleophosmin, nuclear factor-kappaB, and cyclic AMP response element binding with acquired resistance to Faslodex (ICI 182 780). Cancer Res 62: 3428–3437.

    CAS  PubMed  Google Scholar 

  • Hoch RV, Thompson DA, Baker RJ, Weigel RJ . (1999). GATA-3 is expressed in association with estrogen receptor in breast cancer. Int J Cancer 84: 122–128.

    Article  CAS  PubMed  Google Scholar 

  • Holst F, Stahl PR, Ruiz C, Hellwinkel O, Jehan Z, Wendland M et al. (2007). Estrogen receptor α (ESR1) gene amplification is frequent in breast cancer. Nat Genet 39: 655–660.

    Article  CAS  PubMed  Google Scholar 

  • Horlings HM, Bergamaschi A, Nordgard SH, Kim YH, Han W, Noh DY et al. (2008). ESR1 gene amplification in breast cancer: a common phenomenon? Nat Genet 40: 807–808; author reply 810–2.

    Article  CAS  PubMed  Google Scholar 

  • Hunter DJ, Kraft P, Jacobs KB, Cox DG, Yeager M, Hankinson SE et al. (2007). A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39: 870–874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iorns E, Turner NC, Elliott R, Syed N, Garrone O, Gasco M et al. (2008). Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell 13: 91–104.

    Article  CAS  PubMed  Google Scholar 

  • Jelovac D, Sabnis G, Long BJ, Macedo L, Goloubeva OG, Brodie AM . (2005). Activation of mitogen-activated protein kinase in xenografts and cells during prolonged treatment with aromatase inhibitor letrozole. Cancer Res 65: 5380–5389.

    Article  CAS  PubMed  Google Scholar 

  • Jeng MH, Shupnik MA, Bender TP, Westin EH, Bandyopadhyay D, Kumar R et al. (1998). Estrogen receptor expression and function in long-term estrogen-deprived human breast cancer cells. Endocrinology 139: 4164–4174.

    Article  CAS  PubMed  Google Scholar 

  • Johnston S, Pippen Jr J, Pivot X, Lichinitser M, Sadeghi S, Dieras V et al. (2009). Lapatinib combined with letrozole versus letrozole and placebo as first-line therapy for postmenopausal hormone receptor-positive metastatic breast cancer. J Clin Oncol 27: 5538–5546.

    Article  CAS  PubMed  Google Scholar 

  • Johnston SR, Martin LA, Head J, Smith I, Dowsett M . (2005). Aromatase inhibitors: combinations with fulvestrant or signal transduction inhibitors as a strategy to overcome endocrine resistance. J Steroid Biochem Mol Biol 95: 173–181.

    Article  CAS  PubMed  Google Scholar 

  • Johnston SR, Saccani-Jotti G, Smith IE, Salter J, Newby J, Coppen M et al. (1995). Changes in estrogen receptor, progesterone receptor, and pS2 expression in tamoxifen-resistant human breast cancer. Cancer Res 55: 3331–3338.

    CAS  PubMed  Google Scholar 

  • Jonat W, Kaufmann M, Blamey RW, Howell A, Collins JP, Coates A et al. (1995). A randomised study to compare the effect of the luteinising hormone releasing hormone (LHRH) analogue goserelin with or without tamoxifen in pre- and perimenopausal patients with advanced breast cancer. Eur J Cancer 31A: 137–142.

    Article  CAS  PubMed  Google Scholar 

  • Kanai M, Tashiro E, Maruki H, Minato Y, Imoto M . (2009). Transcriptional regulation of human fibroblast growth factor receptor 1 by E2F-1. Gene 438: 49–56.

    Article  CAS  PubMed  Google Scholar 

  • Katzenellenbogen BS, Kendra KL, Norman MJ, Berthois Y . (1987). Proliferation, hormonal responsiveness, and estrogen receptor content of MCF-7 human breast cancer cells grown in the short-term and long-term absence of estrogens. Cancer Res 47: 4355–4360.

    CAS  PubMed  Google Scholar 

  • Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME et al. (2003). Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144: 1032–1044.

    Article  CAS  PubMed  Google Scholar 

  • Korc M, Friesel RE . (2009). The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets 9: 639–651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouros-Mehr H, Kim JW, Bechis SK, Werb Z . (2008). GATA-3 and the regulation of the mammary luminal cell fate. Curr Opin Cell Biol 20: 164–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lannigan DA . (2003). Estrogen receptor phosphorylation. Steroids 68: 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Lewis-Wambi JS, Cunliffe HE, Kim HR, Willis AL, Jordan VC . (2008). Overexpression of CEACAM6 promotes migration and invasion of oestrogen-deprived breast cancer cells. Eur J Cancer 44: 1770–1779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma XJ, Wang Z, Ryan PD, Isakoff SJ, Barmettler A, Fuller A et al. (2004). A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen. Cancer Cell 5: 607–616.

    Article  CAS  PubMed  Google Scholar 

  • Martin LA, Farmer I, Johnston SR, Ali S, Dowsett M . (2005). Elevated ERK1/ERK2/estrogen receptor cross-talk enhances estrogen-mediated signaling during long-term estrogen deprivation. Endocr Relat Cancer 12 (Suppl 1): S75–S84.

    Article  CAS  PubMed  Google Scholar 

  • Martin LA, Farmer I, Johnston SR, Ali S, Marshall C, Dowsett M . (2003). Enhanced estrogen receptor (ER) α, ERBB2, and MAPK signal transduction pathways operate during the adaptation of MCF-7 cells to long term estrogen deprivation. J Biol Chem 278: 30458–30468.

    Article  CAS  PubMed  Google Scholar 

  • Masamura S, Santner SJ, Heitjan DF, Santen RJ . (1995). Estrogen deprivation causes estradiol hypersensitivity in human breast cancer cells. J Clin Endocrinol Metab 80: 2918–2925.

    CAS  PubMed  Google Scholar 

  • Masri S, Phung S, Wang X, Wu X, Yuan YC, Wagman L et al. (2008). Genome-wide analysis of aromatase inhibitor-resistant, tamoxifen-resistant, and long-term estrogen-deprived cells reveals a role for estrogen receptor. Cancer Res 68: 4910–4918.

    Article  CAS  PubMed  Google Scholar 

  • Massarweh S, Schiff R . (2006). Resistance to endocrine therapy in breast cancer: exploiting estrogen receptor/growth factor signaling crosstalk. Endocr Relat Cancer 13 (Suppl 1): S15–S24.

    Article  CAS  PubMed  Google Scholar 

  • Massarweh S, Schiff R . (2007). Unraveling the mechanisms of endocrine resistance in breast cancer: new therapeutic opportunities. Clin Cancer Res 13: 1950–1954.

    Article  CAS  PubMed  Google Scholar 

  • Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A et al. (2006). TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34: D108–D110.

    Article  CAS  PubMed  Google Scholar 

  • McClelland RA, Barrow D, Madden TA, Dutkowski CM, Pamment J, Knowlden JM et al. (2001). Enhanced epidermal growth factor receptor signaling in MCF7 breast cancer cells after long-term culture in the presence of the pure antiestrogen ICI 182 780 (Faslodex). Endocrinology 142: 2776–2788.

    Article  CAS  PubMed  Google Scholar 

  • Meyer KB, Maia AT, O'Reilly M, Teschendorff AE, Chin SF, Caldas C et al. (2008). Allele-specific up-regulation of FGFR2 increases susceptibility to breast cancer. PLoS Biol 6: e108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Michalides R, Griekspoor A, Balkenende A, Verwoerd D, Janssen L, Jalink K et al. (2004). Tamoxifen resistance by a conformational arrest of the estrogen receptor α after PKA activation in breast cancer. Cancer Cell 5: 597–605.

    Article  CAS  PubMed  Google Scholar 

  • Miller WR, Larionov AA, Renshaw L, Anderson TJ, White S, Murray J et al. (2007). Changes in breast cancer transcriptional profiles after treatment with the aromatase inhibitor, letrozole. Pharmacogenet Genomics 17: 813–826.

    Article  CAS  PubMed  Google Scholar 

  • Normanno N, Di Maio M, De Maio E, De Luca A, de Matteis A, Giordano A et al. (2005). Mechanisms of endocrine resistance and novel therapeutic strategies in breast cancer. Endocr Relat Cancer 12: 721–747.

    Article  CAS  PubMed  Google Scholar 

  • Osborne CK, Shou J, Massarweh S, Schiff R . (2005). Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin Cancer Res 11: 865s–8670s.

    CAS  PubMed  Google Scholar 

  • Pique-Regi R, Monso-Varona J, Ortega A, Seeger RC, Triche TJ, Asgharzadeh S . (2008). Sparse representation and Bayesian detection of genome copy number alterations from microarray data. Bioinformatics 24: 309–318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reis-Filho JS, Drury S, Lambros MB, Marchio C, Johnson N, Natrajan R et al. (2008). ESR1 gene amplification in breast cancer: a common phenomenon? Nat Genet 40: 809–810; author reply 810–2.

    Article  CAS  PubMed  Google Scholar 

  • Rose C, Vtoraya O, Pluzanska A, Davidson N, Gershanovich M, Thomas R et al. (2003). An open randomised trial of second-line endocrine therapy in advanced breast cancer: comparison of the aromatase inhibitors letrozole and anastrozole. Eur J Cancer 39: 2318–2327.

    Article  CAS  PubMed  Google Scholar 

  • Sabnis GJ, Jelovac D, Long B, Brodie A . (2005). The role of growth factor receptor pathways in human breast cancer cells adapted to long-term estrogen deprivation. Cancer Res 65: 3903–3910.

    Article  CAS  PubMed  Google Scholar 

  • Sadler AJ, Pugazhendhi D, Darbre PD . (2009). Use of global gene expression patterns in mechanistic studies of oestrogen action in MCF7 human breast cancer cells. J Steroid Biochem Mol Biol 114: 21–32.

    Article  CAS  PubMed  Google Scholar 

  • Santen R, Jeng MH, Wang JP, Song R, Masamura S, McPherson R et al. (2001). Adaptive hypersensitivity to estradiol: potential mechanism for secondary hormonal responses in breast cancer patients. J Steroid Biochem Mol Biol 79: 115–125.

    Article  CAS  PubMed  Google Scholar 

  • Santen RJ, Song RX, Masamura S, Yue W, Fan P, Sogon T et al. (2008). Adaptation to estradiol deprivation causes up-regulation of growth factor pathways and hypersensitivity to estradiol in breast cancer cells. Adv Exp Med Biol 630: 19–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santen RJ, Song RX, Zhang Z, Kumar R, Jeng MH, Masamura A et al. (2005). Long-term estradiol deprivation in breast cancer cells up-regulates growth factor signaling and enhances estrogen sensitivity. Endocr Relat Cancer 12 (Suppl 1): S61–S73.

    Article  CAS  PubMed  Google Scholar 

  • Schild-Hay LJ, Leil TA, Divi RL, Olivero OA, Weston A, Poirier MC . (2009). Tamoxifen induces expression of immune response-related genes in cultured normal human mammary epithelial cells. Cancer Res 69: 1150–1155.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schones DE, Smith AD, Zhang MQ . (2007). Statistical significance of cis-regulatory modules. BMC Bioinformatics 8: 19.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shaw LE, Sadler AJ, Pugazhendhi D, Darbre PD . (2006). Changes in oestrogen receptor-α and -β during progression to acquired resistance to tamoxifen and fulvestrant (Faslodex, ICI 182 780) in MCF7 human breast cancer cells. J Steroid Biochem Mol Biol 99: 19–32.

    Article  CAS  PubMed  Google Scholar 

  • Shen R, Chinnaiyan AM, Ghosh D . (2008). Pathway analysis reveals functional convergence of gene expression profiles in breast cancer. BMC Med Genomics 1: 28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shim WS, Conaway M, Masamura S, Yue W, Wang JP, Kmar R et al. (2000). Estradiol hypersensitivity and mitogen-activated protein kinase expression in long-term estrogen deprived human breast cancer cells in vivo. Endocrinology 141: 396–405.

    Article  CAS  PubMed  Google Scholar 

  • Solé X, Bonifaci N, López-Bigas N, Berenguer A, Hernández P, Reina O et al. (2009). Biological convergence of cancer signatures. PLoS One 4: e4544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song RX, Fan P, Yue W, Chen Y, Santen RJ . (2006). Role of receptor complexes in the extranuclear actions of estrogen receptor α in breast cancer. Endocr Relat Cancer 13 (Suppl 1): S3–13.

    Article  CAS  PubMed  Google Scholar 

  • Stamm S, Riethoven JJ, Le Texier V, Gopalakrishnan C, Kumanduri V, Tang Y et al. (2006). ASD: a bioinformatics resource on alternative splicing. Nucleic Acids Res 34: D46–D55.

    Article  CAS  PubMed  Google Scholar 

  • Stephen R, Darbre PD . (2000). Loss of growth inhibitory effects of retinoic acid in human breast cancer cells following long-term exposure to retinoic acid. Br J Cancer 83: 1183–1191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephen RL, Shaw LE, Larsen C, Corcoran D, Darbre PD . (2001). Insulin-like growth factor receptor levels are regulated by cell density and by long term estrogen deprivation in MCF7 human breast cancer cells. J Biol Chem 276: 40080–40086.

    Article  CAS  PubMed  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102: 15545–15550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tashiro E, Minato Y, Maruki H, Asagiri M, Imoto M . (2003). Regulation of FGF receptor-2 expression by transcription factor E2F-1. Oncogene 22: 5630–5635.

    Article  CAS  PubMed  Google Scholar 

  • Tomita S, Zhang Z, Nakano M, Ibusuki M, Kawazoe T, Yamamoto Y et al. (2009). Estrogen receptor α gene ESR1 amplification may predict endocrine therapy responsiveness in breast cancer patients. Cancer Sci 100: 1012–1017.

    Article  CAS  PubMed  Google Scholar 

  • Turner N, Lambros MB, Horlings HM, Pearson A, Sharpe R, Natrajan R et al. (2010a). Integrative molecular profiling of triple negative breast cancers identifies amplicon drivers and potential therapeutic targets. Oncogene 29: 2013–2023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner N, Pearson A, Sharpe R, Lambros M, Geyer F, Lopez-Garcia MA et al. (2010b). FGFR1 amplification drives endocrine therapy resistance and is a therapeutic target in breast cancer. Cancer Res 70: 2085–2094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Vijver MJ, He YD, van't Veer LJ, Dai H, Hart AA, Voskuil DW et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347: 1999–2009.

    Article  CAS  PubMed  Google Scholar 

  • Vincent-Salomon A, Raynal V, Lucchesi C, Gruel N, Delattre O . (2008). ESR1 gene amplification in breast cancer: a common phenomenon? Nat Genet 40: 809; author reply 810–2.

    Article  CAS  PubMed  Google Scholar 

  • Vuaroqueaux V, Urban P, Labuhn M, Delorenzi M, Wirapati P, Benz CC et al. (2007). Low E2F1 transcript levels are a strong determinant of favorable breast cancer outcome. Breast Cancer Res 9: R33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Welshons WV, Jordan VC . (1987). Adaptation of estrogen-dependent MCF-7 cells to low estrogen (phenol red-free) culture. Eur J Cancer Clin Oncol 23: 1935–1939.

    Article  CAS  PubMed  Google Scholar 

  • Winer EP, Hudis C, Burstein HJ, Chlebowski RT, Ingle JN, Edge SB et al. (2002). American Society of Clinical Oncology technology assessment on the use of aromatase inhibitors as adjuvant therapy for women with hormone receptor-positive breast cancer: status report 2002. J Clin Oncol 20: 3317–3327.

    Article  CAS  PubMed  Google Scholar 

  • Wolfer A, Wittner BS, Irimia D, Flavin RJ, Lupien M, Gunawardane RN et al. (2010). MYC regulation of a ‘poor-prognosis’ metastatic cancer cell state. Proc Natl Acad Sci USA 107: 3698–3703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Bieda M, Jin VX, Rabinovich A, Oberley MJ, Green R et al. (2007). A comprehensive ChIP-chip analysis of E2F1, E2F4, and E2F6 in normal and tumor cells reveals interchangeable roles of E2F family members. Genome Res 17: 1550–1561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu JX, Sieuwerts AM, Zhang Y, Martens JW, Smid M, Klijn JG et al. (2007). Pathway analysis of gene signatures predicting metastasis of node-negative primary breast cancer. BMC Cancer 7: 182.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yue W, Wang J, Li Y, Fan P, Santen RJ . (2005). Farnesylthiosalicylic acid blocks mammalian target of rapamycin signaling in breast cancer cells. Int J Cancer 117: 746–754.

    Article  CAS  PubMed  Google Scholar 

  • Yue W, Wang JP, Conaway MR, Li Y, Santen RJ . (2003). Adaptive hypersensitivity following long-term estrogen deprivation: involvement of multiple signal pathways. J Steroid Biochem Mol Biol 86: 265–274.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Chen D, Fenstermacher DA . (2007). Integrated analysis of independent gene expression microarray datasets improves the predictability of breast cancer outcome. BMC Genomics 8: 331.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Spanish Ministry of Health CIBERESP and grant 06/0545 and the Ministry of Science and Innovation (MICINN) grant SAF06/05399. HA was supported by a MICINN postdoctoral fellowship and MAP was a ‘Ramón y Cajal’ Researcher with the MICINN.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A Urruticoechea or M A Pujana.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aguilar, H., Solé, X., Bonifaci, N. et al. Biological reprogramming in acquired resistance to endocrine therapy of breast cancer. Oncogene 29, 6071–6083 (2010). https://doi.org/10.1038/onc.2010.333

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.333

Keywords

This article is cited by

Search

Quick links