Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The proximal signaling network of the BCR-ABL1 oncogene shows a modular organization

Abstract

BCR-ABL1 is a fusion tyrosine kinase, which causes multiple types of leukemia. We used an integrated proteomic approach that includes label-free quantitative protein complex and phosphorylation profiling by mass spectrometry to systematically characterize the proximal signaling network of this oncogenic kinase. The proximal BCR-ABL1 signaling network shows a modular and layered organization with an inner core of three leukemia transformation-relevant adaptor protein complexes (Grb2/Gab2/Shc1 complex, CrkI complex and Dok1/Dok2 complex). We introduced an ‘interaction directionality’ analysis, which annotates static protein networks with information on the directionality of phosphorylation-dependent interactions. In this analysis, the observed network structure was consistent with a step-wise phosphorylation-dependent assembly of the Grb2/Gab2/Shc1 and the Dok1/Dok2 complexes on the BCR-ABL1 core. The CrkI complex demonstrated a different directionality, which supports a candidate assembly on the Nedd9 (Hef1, CasL) scaffold. As adaptor protein family members can compensate for each other in leukemic transformation, we compared members of the Dok and Crk protein families and found both overlapping and differential binding patterns. We identified an additional level of regulation for the CrkII protein via binding to 14-3-3 proteins, which was independent from its inhibitory phosphorylation. We also identified novel components of the inner core complexes, including the kinases Pragmin (Sgk223) and Lrrk1 (Lrrk2 paralog). Pragmin was found as a component of the CrkI complex and is a potential link between BCR-ABL1/CrkI and RhoA signaling. Lrrk1 is an unusual kinase with a GTPase domain. We detected Lrrk1 as a component of the Grb2/Gab2/Shc1 complex and found that it functionally interacts with the regulator of small GTPases Arap1 (Centd2) and possibly participates in the mitogen-activated protein kinase response to cellular stresses. This modular and phosphorylation-driven interaction network provides a framework for the integration of pleiotropic signaling effects of BCR-ABL1 toward leukemic transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Altun-Gultekin ZF, Chandriani S, Bougeret C, Ishizaki T, Narumiya S, de Graaf P et al. (1998). Activation of Rho-dependent cell spreading and focal adhesion biogenesis by the v-Crk adaptor protein. Mol Cell Biol 18: 3044–3058.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bache KG, Raiborg C, Mehlum A, Stenmark H . (2003). STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J Biol Chem 278: 12513–12521.

    CAS  PubMed  Google Scholar 

  • Baier T, Neuwirth E . (2009). R (D) COM Server. URL: http://rcom.univie.ac.at/.

  • Berger AH, Niki M, Morotti A, Taylor BS, Socci ND, Viale A et al. (2010). Identification of DOK genes as lung tumor suppressors. Nat Genet 42: 216–223.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blagoev B, Kratchmarova I, Ong S, Nielsen M, Foster LJ, Mann M . (2003). A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol 21: 315–318.

    CAS  PubMed  Google Scholar 

  • Brehme M, Hantschel O, Colinge J, Kaupe I, Planyavsky M, Köcher T et al. (2009). Charting the molecular network of the drug target Bcr-Abl. Proc Natl Acad Sci USA 106: 7414–7419.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bürckstümmer T, Bennett KL, Preradovic A, Schütze G, Hantschel O, Superti-Furga G et al. (2006). An efficient tandem affinity purification procedure for interaction proteomics in mammalian cells. Nat Methods 3: 1013–1019.

    PubMed  Google Scholar 

  • Burgess MR, Skaggs BJ, Shah NP, Lee FY, Sawyers CL . (2005). Comparative analysis of two clinically active BCR-ABL kinase inhibitors reveals the role of conformation-specific binding in resistance. Pro Natl Acad Sci USA 102: 3395–3400.

    CAS  Google Scholar 

  • Caplan AJ, Mandal AK, Theodoraki MA . (2007). Molecular chaperones and protein kinase quality control. Trends Cell Biol 17: 87–92.

    CAS  PubMed  Google Scholar 

  • Daley GQ, Baltimore D . (1988). Transformation of an interleukin 3-dependent hematopoietic cell line by the chronic myelogenous leukemia-specific P210bcr/abl protein. Proc Natl Acad Sci USA 85: 9312–9316.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daniele T, Di Tullio G, Santoro M, Turacchio G, De Matteis MA . (2008). ARAP1 regulates EGF receptor trafficking and signalling. Traffic 9: 2221–2235.

    CAS  PubMed  Google Scholar 

  • de Jong R, van Wijk A, Haataja L, Heisterkamp N, Groffen J . (1997). BCR/ABL-induced leukemogenesis causes phosphorylation of Hef1 and its association with Crkl. J Biol Chem 272: 32649–32655.

    CAS  PubMed  Google Scholar 

  • Di Cristofano A, Niki M, Zhao M, Karnell FG, Clarkson B, Pear WS et al. (2001). p62(dok), a negative regulator of Ras and mitogen-activated protein kinase (MAPK) activity, opposes leukemogenesis by p210(bcr-abl). J Exp Med 194: 275–284.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Diella F, Haslam N, Chica C, Budd A, Michael S, Brown NP et al. (2008). Understanding eukaryotic linear motifs and their role in cell signaling and regulation. Front Biosci 13: 6580–6603.

    CAS  PubMed  Google Scholar 

  • Dosztanyi Z, Csizmok V, Tompa P, Simon I . (2005). IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content. Bioinformatics 21: 3433.

    CAS  PubMed  Google Scholar 

  • Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM et al. (2001). Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344: 1031–1037.

    CAS  PubMed  Google Scholar 

  • Eck MJ, Dhe-Paganon S, Trüb T, Nolte RT, Shoelson SE . (1996). Structure of the IRS-1 PTB domain bound to the juxtamembrane region of the insulin receptor. Cell 85: 695–705.

    CAS  PubMed  Google Scholar 

  • Faisal A, Kleiner S, Nagamine Y . (2004). Non-redundant role of Shc in Erk activation by cytoskeletal reorganization. J Biol Chem 279: 3202–3211.

    CAS  PubMed  Google Scholar 

  • Feller SM . (2001). Crk family adaptors-signalling complex formation and biological roles. Oncogene 20: 6348–6371.

    Article  CAS  PubMed  Google Scholar 

  • Gautreau A, Ho HH, Li J, Steen H, Gygi SP, Kirschner MW . (2004). Purification and architecture of the ubiquitous Wave complex. Proc Natl Acad Sci USA 101: 4379–4383.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gilks WP, Abou-Sleiman PM, Gandhi S, Jain S, Singleton A, Lees AJ et al. (2005). A common LRRK2 mutation in idiopathic Parkinson's disease. Lancet 365: 415–416.

    CAS  PubMed  Google Scholar 

  • Gloeckner CJ, Schumacher A, Boldt K, Ueffing M . (2009). The Parkinson disease-associated protein kinase LRRK2 exhibits MAPKKK activity and phosphorylates MKK3/6 and MKK4/7, in vitro. J Neurochem 109: 959–968.

    CAS  PubMed  Google Scholar 

  • Goga A, McLaughlin J, Afar DE, Saffran DC, Witte ON . (1995). Alternative signals to RAS for hematopoietic transformation by the BCR-ABL oncogene. Cell 82: 981–988.

    CAS  PubMed  Google Scholar 

  • Goss VL, Lee KA, Moritz A, Nardone J, Spek EJ, MacNeill J et al. (2006). A common phosphotyrosine signature for the Bcr-Abl kinase. Blood 107: 4888–4897.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goudreault M, D'Ambrosio LM, Kean MJ, Mullin MJ, Larsen BG, Sanchez A et al. (2009). A PP2A phosphatase high density interaction network identifies a novel striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 3 (CCM3) protein. Mol Cell Proteomics 8: 157–171.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graeber TG, Heath JR, Skaggs BJ, Phelps ME, Remacle F, Levine RD . (2010). Maximal entropy inference of oncogenicity from phosphorylation signaling. Proc Natl Acad Sci USA 107: 6112–6117.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harada JN, Bower KE, Orth AP, Callaway S, Nelson CG, Laris C et al. (2005). Identification of novel mammalian growth regulatory factors by genome-scale quantitative image analysis. Genome Res 15: 1136–1144.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwell LH, Hopfield JJ, Leibler S, Murray AW . (1999). From molecular to modular cell biology. Nature 402: C47–C52.

    CAS  PubMed  Google Scholar 

  • He Y, Wertheim JA, Xu L, Miller JP, Karnell FG, Choi JK et al. (2002). The coiled-coil domain and Tyr177 of bcr are required to induce a murine chronic myelogenous leukemia-like disease by bcr/abl. Blood 99: 2957–2968.

    CAS  PubMed  Google Scholar 

  • Hemmeryckx B, Reichert A, Watanabe M, Kaartinen V, de Jong R, Pattengale PK et al. (2002). BCR/ABL P190 transgenic mice develop leukemia in the absence of Crkl. Oncogene 21: 3225–3231.

    CAS  PubMed  Google Scholar 

  • Heo HY, Park J, Kim C, Han BS, Kim K, Seol W . (2010). LRRK2 enhances oxidative stress-induced neurotoxicity via its kinase activity. Exp Cell Res 316: 649–656.

    CAS  PubMed  Google Scholar 

  • Hornbeck PV, Chabra I, Kornhauser JM, Skrzypek E, Zhang B . (2004). PhosphoSite: a bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics 4: 1551–1561.

    CAS  PubMed  Google Scholar 

  • Hu Y, Liu Y, Pelletier S, Buchdunger E, Warmuth M, Fabbro D et al. (2004). Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet 36: 453–461.

    CAS  PubMed  Google Scholar 

  • Hu Y, Swerdlow S, Duffy TM, Weinmann R, Lee FY, Li S . (2006). Targeting multiple kinase pathways in leukemic progenitors and stem cells is essential for improved treatment of Ph+ leukemia in mice. Proc Natl Acad Sci USA 103: 16870–16875.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughan SC, Watson SP . (2007). Differential regulation of adapter proteins Dok2 and Dok1 in platelets, leading to an association of Dok2 with integrin alphaIIbbeta3. J Thromb Haemost 5: 387–394.

    CAS  PubMed  Google Scholar 

  • Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J et al. (2009). STRING 8—a global view on proteins and their functional interactions in 630 organisms. Nucleic Acids Res 37: D412–D416.

    CAS  PubMed  Google Scholar 

  • Johnson KJ, Griswold IJ, O'Hare T, Corbin AS, Loriaux M, Deininger MW et al. (2009). A BCR-ABL mutant lacking direct binding sites for the GRB2, CBL and CRKL adapter proteins fails to induce leukemia in mice. PLoS ONE 4: e7439.

    PubMed  PubMed Central  Google Scholar 

  • Kanazawa C, Morita E, Yamada M, Ishii N, Miura S, Asao H et al. (2003). Effects of deficiencies of STAMs and Hrs, mammalian class E Vps proteins, on receptor downregulation. Biochem Biophys Res Commun 309: 848–856.

    CAS  PubMed  Google Scholar 

  • Kantarjian HM, Giles F, Quintás-Cardama A, Cortes J . (2007). Important therapeutic targets in chronic myelogenous leukemia. Clin Cancer Res 13: 1089–1097.

    CAS  PubMed  Google Scholar 

  • Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C et al. (2007). IntAct—open source resource for molecular interaction data. Nucleic Acids Res 35: D561–D565.

    CAS  PubMed  Google Scholar 

  • Kirsch KH, Georgescu MM, Ishimaru S, Hanafusa H . (1999). CMS: an adapter molecule involved in cytoskeletal rearrangements. Proc Natl Acad Sci USA 96: 6211–6216.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobashigawa Y, Sakai M, Naito M, Yokochi M, Kumeta H, Makino Y et al. (2007). Structural basis for the transforming activity of human cancer-related signaling adaptor protein CRK. Nat Struct Mol Biol 14: 503–510.

    CAS  PubMed  Google Scholar 

  • Korr D, Toschi L, Donner P, Pohlenz H, Kreft B, Weiss B . (2006). LRRK1 protein kinase activity is stimulated upon binding of GTP to its Roc domain. Cell Signal 18: 910–920.

    CAS  PubMed  Google Scholar 

  • Leng Y, Zhang J, Badour K, Arpaia E, Freeman S, Cheung P et al. (2005). Abelson-interactor-1 promotes WAVE2 membrane translocation and Abelson-mediated tyrosine phosphorylation required for WAVE2 activation. Proc Natl Acad Sci USA 102: 1098–1103.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liou AKF, Leak RK, Li L, Zigmond MJ . (2008). Wild-type LRRK2 but not its mutant attenuates stress-induced cell death via ERK pathway. Neurobiol Dis 32: 116–124.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchler-Bauer A, Anderson JB, Chitsaz F, Derbyshire MK, DeWeese-Scott C, Fong JH et al. (2009). CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37: D205–D210.

    CAS  PubMed  Google Scholar 

  • McGavin MK, Badour K, Hardy LA, Kubiseski TJ, Zhang J, Siminovitch KA . (2001). The intersectin 2 adaptor links Wiskott Aldrich Syndrome protein (WASp)-mediated actin polymerization to T cell antigen receptor endocytosis. J Exp Med 194: 1777–1787.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Million RP, Van Etten RA . (2000). The Grb2 binding site is required for the induction of chronic myeloid leukemia-like disease in mice by the Bcr/Abl tyrosine kinase. Blood 96: 664–670.

    CAS  PubMed  Google Scholar 

  • Miura K, Jacques KM, Stauffer S, Kubosaki A, Zhu K, Hirsch DS et al. (2002). ARAP1: a point of convergence for Arf and Rho signaling. Mol Cell 9: 109–119.

    CAS  PubMed  Google Scholar 

  • Morrison DK . (2009). The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol 19: 16–23.

    CAS  PubMed  Google Scholar 

  • Mullighan CG, Zhang J, Harvey RC, Collins-Underwood JR, Schulman BA, Phillips LA et al. (2009). JAK mutations in high-risk childhood acute lymphoblastic leukemia. Proc Natl Acad Sci USA 106: 9414–9418.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neduva V, Russell RB . (2006). Peptides mediating interaction networks: new leads at last. Curr Opin Biotechnol 17: 465–471.

    CAS  PubMed  Google Scholar 

  • Nichols GL, Raines MA, Vera JC, Lacomis L, Tempst P, Golde DW . (1994). Identification of CRKL as the constitutively phosphorylated 39-kD tyrosine phosphoprotein in chronic myelogenous leukemia cells. Blood 84: 2912–2918.

    CAS  PubMed  Google Scholar 

  • Niki M, Di Cristofano A, Zhao M, Honda H, Hirai H, Van Aelst L et al. (2004). Role of Dok-1 and Dok-2 in leukemia suppression. J Exp Med 200: 1689–1695.

    CAS  PubMed  PubMed Central  Google Scholar 

  • O'Neill GM, Seo S, Serebriiskii IG, Lessin SR, Golemis EA . (2007). A new central scaffold for metastasis: parsing HEF1/Cas-L/NEDD9. Cancer Res 67: 8975–8979.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oda T, Heaney C, Hagopian JR, Okuda K, Griffin JD, Druker BJ . (1994). Crkl is the major tyrosine-phosphorylated protein in neutrophils from patients with chronic myelogenous leukemia. J Biol Chem 269: 22925–22928.

    CAS  PubMed  Google Scholar 

  • Paisán-Ruíz C, Jain S, Evans EW, Gilks WP, Simón J, van der Brug M et al. (2004). Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron 44: 595–600.

    PubMed  Google Scholar 

  • Pawson T . (2007). Dynamic control of signaling by modular adaptor proteins. Curr Opin Cell Biol 19: 112–116.

    CAS  PubMed  Google Scholar 

  • Pendergast AM, Quilliam LA, Cripe LD, Bassing CH, Dai Z, Li N et al. (1993). BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 75: 175.

    CAS  PubMed  Google Scholar 

  • Pflieger D, Jünger MA, Müller M, Rinner O, Lee H, Gehrig PM et al. (2008). Quantitative proteomic analysis of protein complexes: concurrent identification of interactors and their state of phosphorylation. Mol Cell Proteomics 7: 326–346.

    CAS  PubMed  Google Scholar 

  • Prakash A, Mallick P, Whiteaker J, Zhang H, Paulovich A, Flory M et al. (2006). Signal maps for mass spectrometry-based comparative proteomics. Mol Cell Proteomics 5: 423–432.

    CAS  PubMed  Google Scholar 

  • Prosser DC, Tran D, Gougeon P, Verly C, Ngsee JK . (2008). FFAT rescues VAPA-mediated inhibition of ER-to-Golgi transport and VAPB-mediated ER aggregation. J Cell Sci 121: 3052–3061.

    CAS  PubMed  Google Scholar 

  • Pui C, Jeha S . (2007). New therapeutic strategies for the treatment of acute lymphoblastic leukaemia. Nat Rev Drug Discov 6: 149–165.

    CAS  PubMed  Google Scholar 

  • R Development Core Team (2009). R: A Language and Environment for Statistical Computing (Vienna, Austria). Available at: http://www.R-project.org.

  • Raetz EA, Borowitz MJ, Devidas M, Linda SB, Hunger SP, Winick NJ et al. (2008). Reinduction platform for children with first marrow relapse of acute lymphoblastic leukemia: a children's oncology group study. J Clin Oncol 26: 3971–3978.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramshaw HS, Guthridge MA, Stomski FC, Barry EF, Ooms L, Mitchell CA et al. (2007). The Shc-binding site of the betac subunit of the GM-CSF/IL-3/IL-5 receptors is a negative regulator of hematopoiesis. Blood 110: 3582–3590.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ren R . (2005). Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5: 172–183.

    CAS  PubMed  Google Scholar 

  • Saha S, Guillily MD, Ferree A, Lanceta J, Chan D, Ghosh J et al. (2009). LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J Neurosci 29: 9210–9218.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sämann J, Hegermann J, von Gromoff E, Eimer S, Baumeister R, Schmidt E . (2009). Caenorhabditits elegans LRK-1 and PINK-1 act antagonistically in stress response and neurite outgrowth. J Biol Chem 284: 16482–16491.

    PubMed  PubMed Central  Google Scholar 

  • Sasaoka T, Ishiki M, Wada T, Hori H, Hirai H, Haruta T et al. (2001). Tyrosine phosphorylation-dependent and -independent role of Shc in the regulation of IGF-1-induced mitogenesis and glycogen synthesis. Endocrinology 142: 5226–5235.

    CAS  PubMed  Google Scholar 

  • Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K et al. (2002). Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 1: 479–492.

    CAS  PubMed  Google Scholar 

  • Shah NP, Kasap C, Weier C, Balbas M, Nicoll JM, Bleickardt E et al. (2008). Transient potent BCR-ABL inhibition is sufficient to commit chronic myeloid leukemia cells irreversibly to apoptosis. Cancer Cell 14: 485–493.

    CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D et al. (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498–2504.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skaggs BJ, Gorre ME, Ryvkin A, Burgess MR, Xie Y, Han Y et al. (2006). Phosphorylation of the ATP-binding loop directs oncogenicity of drug-resistant BCR-ABL mutants. Proc Natl Acad Sci USA 103: 19466–19471.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skehel PA, Fabian-Fine R, Kandel ER . (2000). Mouse VAP33 is associated with the endoplasmic reticulum and microtubules. Proc Natl Acad Sci USA 97: 1101–1106.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skehel PA, Martin KC, Kandel ER, Bartsch D . (1995). A VAMP-binding protein from Aplysia required for neurotransmitter release. Science 269: 1580–1583.

    CAS  PubMed  Google Scholar 

  • Skolnik EY, Lee CH, Batzer A, Vicentini LM, Zhou M, Daly R et al. (1993). The SH2/SH3 domain-containing protein GRB2 interacts with tyrosine-phosphorylated IRS1 and Shc: implications for insulin control of ras signalling. EMBO J 12: 1929–1936.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sonoyama J, Matsumura I, Ezoe S, Satoh Y, Zhang X, Kataoka Y et al. (2002). Functional cooperation among Ras, STAT5, and phosphatidylinositol 3-kinase is required for full oncogenic activities of BCR/ABL in K562 cells. J Biol Chem 277: 8076.

    CAS  PubMed  Google Scholar 

  • Spirin V, Mirny LA . (2003). Protein complexes and functional modules in molecular networks. Proc Natl Acad Sci USA 100: 12123–12128.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stuart JR, Gonzalez FH, Kawai H, Yuan Z . (2006). c-Abl interacts with the WAVE2 signaling complex to induce membrane ruffling and cell spreading. J Biol Chem 281: 31290–31297.

    CAS  PubMed  Google Scholar 

  • Tanaka H, Katoh H, Negishi M . (2006). Pragmin, a novel effector of Rnd2 GTPase, stimulates RhoA activity. J Biol Chem 281: 10355–10364.

    CAS  PubMed  Google Scholar 

  • Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D et al. (2009). Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol 27: 199–204.

    CAS  PubMed  Google Scholar 

  • Titz B, Rajagopala SV, Goll J, Häuser R, McKevitt MT, Palzkill T et al. (2008). The binary protein interactome of Treponema pallidum—the syphilis spirochete. PLoS ONE 3: e2292.

    PubMed  PubMed Central  Google Scholar 

  • Trinkle-Mulcahy L, Boulon S, Lam YW, Urcia R, Boisvert F, Vandermoere F et al. (2008). Identifying specific protein interaction partners using quantitative mass spectrometry and bead proteomes. J Cell Biol 183: 223–239.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang L, Xie C, Greggio E, Parisiadou L, Shim H, Sun L et al. (2008). The chaperone activity of heat shock protein 90 is critical for maintaining the stability of leucine-rich repeat kinase 2. J Neurosci 28: 3384–3391.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wong S, Witte ON . (2004). The BCR-ABL story: bench to bedside and back. Annu Rev Immunol 22: 247–306.

    CAS  PubMed  Google Scholar 

  • Yasuda T, Bundo K, Hino A, Honda K, Inoue A, Shirakata M et al. (2007). Dok-1 and Dok-2 are negative regulators of T cell receptor signaling. Int Immunol 19: 487–495.

    CAS  PubMed  Google Scholar 

  • Yasuda T, Shirakata M, Iwama A, Ishii A, Ebihara Y, Osawa M et al. (2004). Role of Dok-1 and Dok-2 in myeloid homeostasis and suppression of leukemia. J Exp Med 200: 1681–1687.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoon H, Lee J, Randazzo PA . (2008). ARAP1 regulates endocytosis of EGFR. Traffic 9: 2236–2252.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu W, Sun X, Clough N, Cobos E, Tao Y, Dai Z . (2008). Abi1 gene silencing by short hairpin RNA impairs Bcr-Abl-induced cell adhesion and migration in vitro and leukemogenesis in vivo. Carcinogenesis 29: 1717–1724.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zimman A, Chen SS, Komisopoulou E, Titz B, Martínez-Pinna R, Kafi A et al. (2010). Activation of aortic endothelial cells by oxidized phospholipids: a phosphoproteomic analysis. J Proteome Res 9: 2812–2824.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zipfel PA, Bunnell SC, Witherow DS, Gu JJ, Chislock EM, Ring C et al. (2006). Role for the Abi/wave protein complex in T cell receptor-mediated proliferation and cytoskeletal remodeling. Curr Biol 16: 35–46.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by grants to TGG from the NIH NHGRI (HG002807) and the University of California, Cancer Research Coordinating Committee, and by postdoctoral fellowships of the German Academic Exchange Service to BT and the UCLA Tumor Biology Program USHHS Ruth L Kirschstein Institutional National Research Service Award # T32 CA009056 to SSC. TGG is an Alfred P Sloan Research Fellow. We thank M Negishi, D Korr and T Bürckstümmer for kindly providing plasmids. Flow cytometry was performed in the UCLA Jonsson Comprehensive Cancer Center and Center for AIDS Research Flow Cytometry Core.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T G Graeber.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Supplementary Information (PDF 1744 kb)

Supplementary Tables (XLS 900 kb)

Phospho-peptide spectra and assignments 1 (WMF 930 kb)

Phospho-peptide spectra and assignments 2 (WMF 890 kb)

Phospho-peptide spectra and assignments 3 (WMF 908 kb)

Phospho-peptide spectra and assignments 4 (WMF 921 kb)

Phospho-peptide spectra and assignments 5 (WMF 901 kb)

Phospho-peptide spectra and assignments 6 (WMF 905 kb)

Phospho-peptide spectra and assignments 7 (WMF 915 kb)

Phospho-peptide spectra and assignments 8 (WMF 892 kb)

Phospho-peptide spectra and assignments 9 (WMF 898 kb)

Phospho-peptide spectra and assignments 10 (WMF 904 kb)

Phospho-peptide spectra and assignments 11 (WMF 908 kb)

Phospho-peptide spectra and assignments 12 (WMF 907 kb)

Phospho-peptide spectra and assignments 13 (WMF 908 kb)

Phospho-peptide spectra and assignments 14 (WMF 908 kb)

Phospho-peptide spectra and assignments 15 (WMF 904 kb)

Phospho-peptide spectra and assignments 16 (WMF 920 kb)

Phospho-peptide spectra and assignments 17 (WMF 911 kb)

Phospho-peptide spectra and assignments 18 (WMF 916 kb)

Phospho-peptide spectra and assignments 19 (WMF 912 kb)

Phospho-peptide spectra and assignments 20 (WMF 893 kb)

Phospho-peptide spectra and assignments 21 (WMF 922 kb)

Phospho-peptide spectra and assignments 22 (WMF 885 kb)

Phospho-peptide spectra and assignments 23 (WMF 884 kb)

Phospho-peptide spectra and assignments 24 (WMF 911 kb)

Phospho-peptide spectra and assignments 25 (WMF 906 kb)

Phospho-peptide spectra and assignments 26 (WMF 913 kb)

Phospho-peptide spectra and assignments 27 (WMF 912 kb)

Phospho-peptide spectra and assignments 28 (WMF 876 kb)

Phospho-peptide spectra and assignments 26 (WMF 902 kb)

Phospho-peptide spectra and assignments 30 (WMF 913 kb)

Phospho-peptide spectra and assignments 31 (WMF 905 kb)

Phospho-peptide spectra and assignments 32 (WMF 915 kb)

Phospho-peptide spectra and assignments 33 (WMF 903 kb)

Phospho-peptide spectra and assignments 34 (WMF 912 kb)

Phospho-peptide spectra and assignments 35 (WMF 911 kb)

Phospho-peptide spectra and assignments 36 (WMF 909 kb)

Phospho-peptide spectra and assignments 37 (WMF 913 kb)

Phospho-peptide spectra and assignments 38 (WMF 881 kb)

Phospho-peptide spectra and assignments 39 (WMF 916 kb)

Phospho-peptide spectra and assignments 40 (WMF 918 kb)

Phospho-peptide spectra and assignments 41 (WMF 911 kb)

Phospho-peptide spectra and assignments 42 (WMF 911 kb)

Phospho-peptide spectra and assignments 43 (WMF 914 kb)

Phospho-peptide spectra and assignments 44 (WMF 894 kb)

Phospho-peptide spectra and assignments 45 (WMF 904 kb)

Phospho-peptide spectra and assignments 46 (WMF 912 kb)

Phospho-peptide spectra and assignments 47 (WMF 914 kb)

Phospho-peptide spectra and assignments 48 (WMF 915 kb)

Phospho-peptide spectra and assignments 49 (WMF 909 kb)

Phospho-peptide spectra and assignments 50 (WMF 896 kb)

Phospho-peptide spectra and assignments 51 (WMF 909 kb)

Phospho-peptide spectra and assignments 52 (WMF 900 kb)

Phospho-peptide spectra and assignments 53 (WMF 921 kb)

Phospho-peptide spectra and assignments 54 (WMF 913 kb)

Phospho-peptide spectra and assignments 55 (WMF 905 kb)

Phospho-peptide spectra and assignments 56 (WMF 921 kb)

Phospho-peptide spectra and assignments 57 (WMF 907 kb)

Phospho-peptide spectra and assignments 58 (WMF 896 kb)

Phospho-peptide spectra and assignments 59 (WMF 908 kb)

Phospho-peptide spectra and assignments 60 (WMF 895 kb)

Phospho-peptide spectra and assignments 61 (WMF 909 kb)

Phospho-peptide spectra and assignments 62 (WMF 883 kb)

Phospho-peptide spectra and assignments 63 (WMF 889 kb)

Phospho-peptide spectra and assignments 64 (WMF 913 kb)

Phospho-peptide spectra and assignments 65 (WMF 910 kb)

Phospho-peptide spectra and assignments 66 (WMF 910 kb)

Phospho-peptide spectra and assignments 67 (WMF 912 kb)

Phospho-peptide spectra and assignments 68 (WMF 894 kb)

Phospho-peptide spectra and assignments 69 (WMF 911 kb)

Phospho-peptide spectra and assignments 70 (WMF 901 kb)

Phospho-peptide spectra and assignments 71 (WMF 887 kb)

Phospho-peptide spectra and assignments 72 (WMF 915 kb)

Phospho-peptide spectra and assignments 73 (WMF 877 kb)

Phospho-peptide spectra and assignments 74 (WMF 899 kb)

Phospho-peptide spectra and assignments 75 (WMF 901 kb)

Phospho-peptide spectra and assignments 76 (WMF 894 kb)

Phospho-peptide spectra and assignments 77 (WMF 908 kb)

Phospho-peptide spectra and assignments 78 (WMF 879 kb)

Phospho-peptide spectra and assignments 79 (WMF 894 kb)

Phospho-peptide spectra and assignments 80 (WMF 911 kb)

Phospho-peptide spectra and assignments 81 (WMF 878 kb)

Phospho-peptide spectra and assignments 82 (WMF 910 kb)

Phospho-peptide spectra and assignments 83 (WMF 879 kb)

Phospho-peptide spectra and assignments 84 (WMF 912 kb)

Phospho-peptide spectra and assignments 85 (WMF 906 kb)

Phospho-peptide spectra and assignments 86 (WMF 892 kb)

Phospho-peptide spectra and assignments 87 (WMF 916 kb)

Phospho-peptide spectra and assignments 88 (WMF 894 kb)

Phospho-peptide spectra and assignments 89 (WMF 917 kb)

Phospho-peptide spectra and assignments 90 (WMF 896 kb)

Phospho-peptide spectra and assignments 91 (WMF 916 kb)

Phospho-peptide spectra and assignments 92 (WMF 909 kb)

Phospho-peptide spectra and assignments 93 (WMF 906 kb)

Phospho-peptide spectra and assignments 94 (WMF 882 kb)

Phospho-peptide spectra and assignments 95 (WMF 894 kb)

Phospho-peptide spectra and assignments 96 (WMF 903 kb)

Phospho-peptide spectra and assignments 97 (WMF 900 kb)

Phospho-peptide spectra and assignments 98 (WMF 895 kb)

Phospho-peptide spectra and assignments 99 (WMF 912 kb)

Phospho-peptide spectra and assignments 100 (WMF 895 kb)

Phospho-peptide spectra and assignments 101 (WMF 886 kb)

Phospho-peptide spectra and assignments 102 (WMF 907 kb)

Phospho-peptide spectra and assignments 103 (WMF 905 kb)

Phospho-peptide spectra and assignments 104 (WMF 922 kb)

Phospho-peptide spectra and assignments 105 (WMF 907 kb)

Phospho-peptide spectra and assignments 106 (WMF 895 kb)

Phospho-peptide spectra and assignments 107 (WMF 873 kb)

Phospho-peptide spectra and assignments 108 (WMF 894 kb)

Phospho-peptide spectra and assignments 109 (WMF 894 kb)

Phospho-peptide spectra and assignments 110 (WMF 909 kb)

Phospho-peptide spectra and assignments 111 (WMF 873 kb)

Phospho-peptide spectra and assignments 112 (WMF 882 kb)

Phospho-peptide spectra and assignments 113 (WMF 904 kb)

Phospho-peptide spectra and assignments 114 (WMF 920 kb)

Phospho-peptide spectra and assignments 115 (DOC 31 kb)

Phospho-peptide spectra and assignments 116 (DOC 22 kb)

Phospho-peptide spectra and assignments 117 (DOC 5408 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Titz, B., Low, T., Komisopoulou, E. et al. The proximal signaling network of the BCR-ABL1 oncogene shows a modular organization. Oncogene 29, 5895–5910 (2010). https://doi.org/10.1038/onc.2010.331

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.331

Keywords

This article is cited by

Search

Quick links