Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation

Abstract

Chronic infection with cagA-positive Helicobacter pylori is the strongest risk factor for the development of gastric adenocarcinoma. The cagA gene product CagA is injected into gastric epithelial cells and disturbs cellular functions by physically interacting with and deregulating a variety of cellular signaling molecules. RUNX3 is a tumor suppressor in many tissues, and it is frequently inactivated in gastric cancer. In this study, we show that H. pylori infection inactivates the gastric tumor suppressor RUNX3 in a CagA-dependent manner. CagA directly associates with RUNX3 through a specific recognition of the PY motif of RUNX3 by a WW domain of CagA. Deletion of the WW domains of CagA or mutation of the PY motif in RUNX3 abolishes the ability of CagA to induce the ubiquitination and degradation of RUNX3, thereby extinguishing its ability to inhibit the transcriptional activation of RUNX3. Our studies identify RUNX3 as a novel cellular target of H. pylori CagA and also reveal a mechanism by which CagA functions as an oncoprotein by blocking the activity of gastric tumor suppressor RUNX3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Blaser MJ, Perez-Perez GI, Kleanthous H, Cover TL, Peek RM, Chyou PH et al. (1995). Infection with Helicobacter pylori strains possessing cagA is associated with an increased risk of developing adenocarcinoma of the stomach. Cancer Res 55: 2111–2115.

    CAS  PubMed  Google Scholar 

  • Chang TL, Ito K, Ko TK, Liu Q, Salto-Tellez M, Yeoh KG et al. (2009). Claudin-1 has tumor suppressive activity and is a direct target of RUNX3 in gastric epithelial cells. Gastroenterology 138: 255–265.

    Article  PubMed  Google Scholar 

  • Chi XZ, Yang JO, Lee KY, Ito K, Sakakura C, Li QL et al. (2005). RUNX3 suppresses gastric epithelial cell growth by inducing p21(WAF1/Cip1) expression in cooperation. Mol Cell Biol 25: 8097–8107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco AT, Israel DA, Washington MK, Krishna U, Fox JG, Rogers AB et al. (2005). Activation of beta-catenin by carcinogenic Helicobacter pylori. Proc Natl Acad Sci USA 102: 10646–10651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanai J, Chen LF, Kanno T, Ohtani-Fujita N, Kim WY, Guo WH et al. (1999). Interaction and functional cooperation of PEBP2/CBF with Smads. Synergistic induction of the immunoglobulin germline Calpha promoter. J Biol Chem 274: 31577–31582.

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama M . (2004). Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat Rev Cancer 4: 688–694.

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama M . (2008). SagA of CagA in Helicobacter pylori pathogenesis. Curr Opin Microbiol 11: 30–37.

    Article  CAS  PubMed  Google Scholar 

  • Hatakeyama M . (2009). Helicobacter pylori and gastric carcinogenesis. J Gastroenterol 44: 239–248.

    Article  CAS  PubMed  Google Scholar 

  • Higashi H, Tsutsumi R, Fujita A, Yamazaki S, Asaka M, Azuma T et al. (2002a). Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci USA 99: 14428–14433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M et al. (2002b). SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295: 683–686.

    Article  CAS  PubMed  Google Scholar 

  • Hsu PI, Hsieh HL, Lee J, Lin LF, Chen HC, Lu PJ et al. (2009). Loss of RUNX3 expression correlates with differentiation, nodal metastasis, and poor prognosis of gastric cancer. Ann Surg Oncol 16: 1686–1694.

    Article  PubMed  Google Scholar 

  • Huang JQ, Zheng GF, Sumanac K, Irvine EJ, Hunt RH . (2003). Meta-analysis of the relationship between cagA seropositivity and gastric cancer. Gastroenterology 125: 1636–1644.

    Article  PubMed  Google Scholar 

  • Ito K, Lim AC, Salto-Tellez M, Motoda L, Osato M, Chuang LS et al. (2008). RUNX3 attenuates beta-catenin/T cell factors in intestinal tumorigenesis. Cancer Cell 14: 226–237.

    Article  CAS  PubMed  Google Scholar 

  • Ito K, Liu Q, Salto-Tellez M, Yano T, Tada K, Ida H et al. (2005). RUNX3, a novel tumor suppressor, is frequently inactivated in gastric cancer by protein mislocalization. Cancer Res 65: 7743–7750.

    Article  CAS  PubMed  Google Scholar 

  • Ito Y . (2004). Oncogenic potential of the RUNX gene family: ‘overview’. Oncogene 23: 4198–4208.

    Article  CAS  PubMed  Google Scholar 

  • Katayama Y, Takahashi M, Kuwayama H . (2009). Helicobacter pylori causes runx3 gene methylation and its loss of expression in gastric epithelial cells, which is mediated by nitric oxide produced by macrophages. Biochem Biophys Res Commun 388: 496–500.

    Article  CAS  PubMed  Google Scholar 

  • Kitajima Y, Ohtaka K, Mitsuno M, Tanaka M, Sato S, Nakafusa Y et al. (2008). Helicobacter pylori infection is an independent risk factor for Runx3 methylation in gastric cancer. Oncol Rep 19: 197–202.

    CAS  PubMed  Google Scholar 

  • Lamb A, Yang XD, Tsang YH, Li JD, Higashi H, Hatakeyama M et al. (2009). Helicobacter pylori CagA activates NF-kappaB by targeting TAK1 for TRAF6-mediated Lys 63 ubiquitination. EMBO Rep 10: 1242–1249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi XZ et al. (2002). Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109: 113–124.

    Article  CAS  PubMed  Google Scholar 

  • Murata-Kamiya N, Kurashima Y, Teishikata Y, Yamahashi Y, Saito Y, Higashi H et al. (2007). Helicobacter pylori CagA interacts with E-cadherin and deregulates the beta-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene 26: 4617–4626.

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi N, Yuasa H, Tanaka S, Sawa H, Miura M, Matsui A et al. (2008). Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proc Natl Acad Sci USA 105: 1003–1008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsonnet J, Friedman GD, Orentreich N, Vogelman H . (1997). Risk for gastric cancer in people with CagA positive or CagA negative Helicobacter pylori infection. Gut 40: 297–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peek Jr RM . (2005). Orchestration of aberrant epithelial signaling by Helicobacter pylori CagA. Sci STKE 2005: pe14.

    PubMed  Google Scholar 

  • Peek Jr RM, Blaser MJ . (2002). Helicobacter pylori and gastrointestinal tract adenocarcinomas. Nat Rev Cancer 2: 28–37.

    Article  CAS  PubMed  Google Scholar 

  • Peng Z, Wei D, Wang L, Tang H, Zhang J, Le X et al. (2006). RUNX3 inhibits the expression of vascular endothelial growth factor and reduces the angiogenesis, growth, and metastasis of human gastric cancer. Clin Cancer Res 12: 6386–6394.

    Article  CAS  PubMed  Google Scholar 

  • Pickart CM . (2001). Mechanisms underlying ubiquitination. Annu Rev Biochem 70: 503–533.

    Article  CAS  PubMed  Google Scholar 

  • Polk DB, Peek Jr RM . (2010). Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer 10: 403–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sudol M, Chen HI, Bougeret C, Einbond A, Bork P . (1995). Characterization of a novel protein-binding module--the WW domain. FEBS Lett 369: 67–71.

    Article  CAS  PubMed  Google Scholar 

  • Sugiura H, Ishiguro H, Kuwabara Y, Kimura M, Mitsui A, Mori Y et al. (2008). Decreased expression of RUNX3 is correlated with tumor progression and poor prognosis in patients with esophageal squamous cell carcinoma. Oncol Rep 19: 713–719.

    CAS  PubMed  Google Scholar 

  • Wei D, Gong W, Oh SC, Li Q, Kim WD, Wang L et al. (2005). Loss of RUNX3 expression significantly affects the clinical outcome of gastric cancer patients and its restoration causes drastic suppression of tumor growth and metastasis. Cancer Res 65: 4809–4816.

    Article  CAS  PubMed  Google Scholar 

  • Yamamura Y, Lee WL, Inoue K, Ida H, Ito Y . (2006). RUNX3 cooperates with FoxO3a to induce apoptosis in gastric cancer cells. J Biol Chem 281: 5267–5276.

    Article  CAS  PubMed  Google Scholar 

  • Yano T, Ito K, Fukamachi H, Chi XZ, Wee HJ, Inoue K et al. (2006). The RUNX3 tumor suppressor upregulates Bim in gastric epithelial cells undergoing transforming growth factor beta-induced apoptosis. Mol Cell Biol 26: 4474–4488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Hatakeyama (University of Tokyo, Japan) for providing the expression vector for CagA-HA and CagA-PR-HA. This work is supported in part by ICR provided by UIUC and NIH Grants DK-085158 (to LFC) and DK-58587, CA-77955 and CA-116087 (to RMP). AL is a recipient of the CMB-TG. YHT is an A*STAR-Illinois Partnership fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L F Chen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsang, Y., Lamb, A., Romero-Gallo, J. et al. Helicobacter pylori CagA targets gastric tumor suppressor RUNX3 for proteasome-mediated degradation. Oncogene 29, 5643–5650 (2010). https://doi.org/10.1038/onc.2010.304

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.304

Keywords

This article is cited by

Search

Quick links