Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

PIM1 kinase is destabilized by ribosomal stress causing inhibition of cell cycle progression

Abstract

PIM1 is a constitutively active serine/threonine kinase regulated by cytokines, growth factors and hormones. It has been implicated in the control of cell cycle progression and apoptosis and its overexpression has been associated with various kinds of lymphoid and hematopoietic malignancies. The activity of PIM1 is dependent on the phosphorylation of several targets involved in transcription, cell cycle and apoptosis. We have recently observed that PIM1 interacts with ribosomal protein (RP)S19 and cosediments with ribosomes. Defects in ribosome synthesis (ribosomal stress) have been shown to activate a p53-dependent growth arrest response. To investigate if PIM1 could have a role in the response to ribosomal stress, we induced ribosome synthesis alterations in TF-1 and K562 erythroid cell lines. We found that RP deficiency, induced by RNA interference or treatment with inhibitor of nucleolar functions, causes a drastic destabilization of PIM1. The lower level of PIM1 induces an increase in the cell cycle inhibitor p27Kip1 and blocks cell proliferation even in the absence of p53. Notably, restoring PIM1 level by transfection causes a recovery of cell growth. Our data indicate that PIM1 may act as a sensor for ribosomal stress independently of or in concert with the known p53-dependent mechanisms.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Anderson SJ, Lauritsen JP, Hartman MG, Foushee AM, Lefebvre JM, Shinton SA et al. (2007). Ablation of ribosomal protein L22 selectively impairs alphabeta T cell development by activation of a p53-dependent checkpoint. Immunity 26: 759–772.

    Article  CAS  PubMed  Google Scholar 

  • Bachmann M, Moroy T . (2005). The serine/threonine kinase Pim-1. Int J Biochem Cell Biol 37: 726–730.

    Article  CAS  PubMed  Google Scholar 

  • Badhai J, Frojmark AS, Razzaghian HR, Davey E, Schuster J, Dahl N . (2009). Posttranscriptional down-regulation of small ribosomal subunit proteins correlates with reduction of 18S rRNA in RPS19 deficiency. FEBS Lett 583: 2049–2053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caldarola S, De Stefano MC, Amaldi F, Loreni F . (2009). Synthesis and function of ribosomal proteins—fading models and new perspectives. FEBS J 276: 3199–3210.

    Article  CAS  PubMed  Google Scholar 

  • Chiocchetti A, Gibello L, Carando A, Aspesi A, Secco P, Garelli E et al. (2005). Interactions between RPS19, mutated in Diamond–Blackfan anemia, and the PIM-1 oncoprotein. Haematologica 90: 1453–1462.

    CAS  PubMed  Google Scholar 

  • Danilova N, Sakamoto KM, Lin S . (2008). Ribosomal protein S19 deficiency in zebrafish leads to developmental abnormalities and defective erythropoiesis through activation of p53 protein family. Blood 112: 5228–5237.

    Article  CAS  PubMed  Google Scholar 

  • Fatica A, Tollervey D . (2002). Making ribosomes. Curr Opin Cell Biol 14: 313–318.

    Article  CAS  PubMed  Google Scholar 

  • Fumagalli S, Di Cara A, Neb-Gulati A, Natt F, Schwemberger S, Hall J et al. (2009). Absence of nucleolar disruption after impairment of 40S ribosome biogenesis reveals an rpL11-translation-dependent mechanism of p53 induction. Nat Cell Biol 11: 501–508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hammerman PS, Fox CJ, Birnbaum MJ, Thompson CB . (2005). Pim and Akt oncogenes are independent regulators of hematopoietic cell growth and survival. Blood 105: 4477–4483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Idol RA, Robledo S, Du HY, Crimmins DL, Wilson DB, Ladenson JH et al. (2007). Cells depleted for RPS19, a protein associated with Diamond–Blackfan anemia, show defects in 18S ribosomal RNA synthesis and small ribosomal subunit production. Blood Cells Mol Dis 39: 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Laird PW, van der Lugt NM, Clarke A, Domen J, Linders K, McWhir J et al. (1993). In vivo analysis of Pim-1 deficiency. Nucleic Acids Res 21: 4750–4755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Larrea MD, Wander SA, Slingerland JM . (2009). p27 as Jekyll and Hyde: regulation of cell cycle and cell motility. Cell Cycle 8: 3455–3461.

    Article  CAS  PubMed  Google Scholar 

  • Liu JM, Ellis SR . (2006). Ribosomes and marrow failure: coincidental association or molecular paradigm? Blood 107: 4583–4588.

    Article  CAS  PubMed  Google Scholar 

  • Losman JA, Chen XP, Vuong BQ, Fay S, Rothman PB . (2003). Protein phosphatase 2A regulates the stability of Pim protein kinases. J Biol Chem 278: 4800–4805.

    Article  CAS  PubMed  Google Scholar 

  • Mayer C, Grummt I . (2005). Cellular stress and nucleolar function. Cell Cycle 4: 1036–1038.

    Article  CAS  PubMed  Google Scholar 

  • McGowan KA, Li JZ, Park CY, Beaudry V, Tabor HK, Sabnis AJ et al. (2008). Ribosomal mutations cause p53-mediated dark skin and pleiotropic effects. Nat Genet 40: 963–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyake K, Flygare J, Kiefer T, Utsugisawa T, Richter J, Ma Z et al. (2005). Development of cellular models for ribosomal protein S19 (RPS19)-deficient Diamond–Blackfan anemia using inducible expression of siRNA against RPS19. Mol Ther 11: 627–637.

    Article  CAS  PubMed  Google Scholar 

  • Morishita D, Katayama R, Sekimizu K, Tsuruo T, Fujita N . (2008). Pim kinases promote cell cycle progression by phosphorylating and down-regulating p27Kip1 at the transcriptional and posttranscriptional levels. Cancer Res 68: 5076–5085.

    Article  CAS  PubMed  Google Scholar 

  • Orru S, Aspesi A, Armiraglio M, Caterino M, Loreni F, Ruoppolo M et al. (2007). Analysis of the ribosomal protein S19 interactome. Mol Cell Proteom 6: 382–393.

    Article  CAS  Google Scholar 

  • Panic L, Montagne J, Cokaric M, Volarevic S . (2007). S6-haploinsufficiency activates the p53 tumor suppressor. Cell Cycle 6: 20–24.

    Article  CAS  PubMed  Google Scholar 

  • Pestov DG, Strezoska Z, Lau LF . (2001). Evidence of p53-dependent cross-talk between ribosome biogenesis and the cell cycle: effects of nucleolar protein Bop1 on G(1)/S transition. Mol Cell Biol 21: 4246–4255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rubbi CP, Milner J . (2003). Disruption of the nucleolus mediates stabilization of p53 in response to DNA damage and other stresses. EMBO J 22: 6068–6077.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggero D, Pandolfi PP . (2003). Does the ribosome translate cancer? Nat Rev Cancer 3: 179–192.

    Article  CAS  PubMed  Google Scholar 

  • Selten G, Cuypers HT, Berns A . (1985). Proviral activation of the putative oncogene Pim-1 in MuLV induced T-cell lymphomas. EMBO J 4: 1793–1798.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah N, Pang B, Yeoh KG, Thorn S, Chen CS, Lilly MB et al. (2008). Potential roles for the PIM1 kinase in human cancer—a molecular and therapeutic appraisal. Eur J Cancer 44: 2144–2151.

    Article  CAS  PubMed  Google Scholar 

  • Shay KP, Wang Z, Xing PX, McKenzie IF, Magnuson NS . (2005). Pim-1 kinase stability is regulated by heat shock proteins and the ubiquitin–proteasome pathway. Mol Cancer Res 3: 170–181.

    Article  PubMed  Google Scholar 

  • Soeiro I, Mohamedali A, Romanska HM, Lea NC, Child ES, Glassford J et al. (2006). p27Kip1 and p130 cooperate to regulate hematopoietic cell proliferation in vivo. Mol Cell Biol 26: 6170–6184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steinman RA . (2002). Cell cycle regulators and hematopoiesis. Oncogene 21: 3403–3413.

    Article  CAS  PubMed  Google Scholar 

  • Sulic S, Panic L, Barkic M, Mercep M, Uzelac M, Volarevic S . (2005). Inactivation of S6 ribosomal protein gene in T lymphocytes activates a p53-dependent checkpoint response. Genes Dev 19: 3070–3082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urashima M, Teoh G, Chauhan D, Ogata A, Shirahama S, Kaihara C et al. (1998). MDM2 protein overexpression inhibits apoptosis of TF-1 granulocyte-macrophage colony-stimulating factor-dependent acute myeloblastic leukemia cells. Blood 92: 959–967.

    CAS  PubMed  Google Scholar 

  • van Lohuizen M, Verbeek S, Krimpenfort P, Domen J, Saris C, Radaszkiewicz T et al. (1989). Predisposition to lymphomagenesis in pim-1 transgenic mice: cooperation with c-myc and N-myc in murine leukemia virus-induced tumors. Cell 56: 673–682.

    Article  CAS  PubMed  Google Scholar 

  • Volarevic S, Stewart MJ, Ledermann B, Zilberman F, Terracciano L, Montini E et al. (2000). Proliferation, but not growth, blocked by conditional deletion of 40S ribosomal protein S6. Science 288: 2045–2047.

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Bhattacharya N, Weaver M, Petersen K, Meyer M, Gapter L et al. (2001). Pim-1: a serine/threonine kinase with a role in cell survival, proliferation, differentiation and tumorigenesis. J Vet Sci 2: 167–179.

    Article  CAS  PubMed  Google Scholar 

  • Zippo A, De Robertis A, Serafini R, Oliviero S . (2007). PIM1-dependent phosphorylation of histone H3 at serine 10 is required for MYC-dependent transcriptional activation and oncogenic transformation. Nat Cell Biol 9: 932–944.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Marcello Giorgi for expert technical assistance. The financial support of Telethon, Italy (Grant No. GGP07242) is gratefully acknowledged. This work was also supported by grants from Diamond Blackfan Anemia Foundation Inc. and the Italian Ministry for University and Research (MIUR) FIRB and PRIN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Loreni.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iadevaia, V., Caldarola, S., Biondini, L. et al. PIM1 kinase is destabilized by ribosomal stress causing inhibition of cell cycle progression. Oncogene 29, 5490–5499 (2010). https://doi.org/10.1038/onc.2010.279

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.279

Keywords

This article is cited by

Search

Quick links