Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility

Abstract

Organisms adapt their metabolism to meet ever changing environmental conditions. This metabolic adaptation involves at a cellular level the fine tuning of mitochondrial function, which is mainly under the control of the transcriptional co-activator proliferator-activated receptor γ co-activator (PGC)-1α. Changes in PGC-1α activity coordinate a transcriptional response, which boosts mitochondrial activity in times of energy needs and attenuates it when energy demands are low. Reversible acetylation has emerged as a key way to alter PGC-1α activity. Although it is well established that PGC-1α is deacetylated and activated by Sirt1 and acetylated and inhibited by GCN5, less is known regarding how these enzymes themselves are regulated. Recently, it became clear that the energy sensor, AMP-activated kinase (AMPK) translates the effects of energy stress into altered Sirt1 activity by regulating the intracellular level of its co-substrate nicotinamide adenine dinucleotide (NAD)+. Conversely, the enzyme ATP citrate lyase (ACL), relates energy balance to GCN5, through the control of the nuclear production of acetyl-CoA, the substrate for GCN5's acetyltransferase activity. We review here how these metabolic signaling pathways, affecting GCN5 and Sirt1 activity, allow the reversible acetylation–deacetylation of PGC-1α and the adaptation of mitochondrial energy homeostasis to energy levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Anderson RM, Bitterman KJ, Wood JG, Medvedik O, Sinclair DA . (2003). Nicotinamide and PNC1 govern lifespan extension by calorie restriction in Saccharomyces cerevisiae. Nature 423: 181–185.

    Article  CAS  Google Scholar 

  • Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA . (2002). Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 277: 45099–45107.

    Article  CAS  Google Scholar 

  • Bracha AL, Ramanathan A, Huang S, Ingber DE, Schreiber SL . (2010). Carbon metabolism-mediated myogenic differentiation. Nat Chem Biol 6: 202–204.

    Article  CAS  Google Scholar 

  • Brown WJ, Burton NW, Rowan PJ . (2007). Updating the evidence on physical activity and health in women. Am J Prev Med 33: 404–411.

    Article  Google Scholar 

  • Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY et al. (1996). Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84: 843–851.

    Article  CAS  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y et al. (2004). Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303: 2011–2015.

    Article  CAS  Google Scholar 

  • Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC et al. (2009). AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458: 1056–1060.

    Article  CAS  Google Scholar 

  • Canto C, Jiang LQ, Deshmukh AS, Mataki C, Coste A, Lagouge M et al. (2010). Interdependence of AMPK and SIRT1 for metabolic adaptation to fasting and exercise in skeletal muscle. Cell Metab 11: 213–219.

    Article  CAS  Google Scholar 

  • Chen H, Lin RJ, Schiltz RL, Chakravarti D, Nash A, Nagy L et al. (1997). Nuclear receptor coactivator ACTR is a novel histone acetyltransferase and forms a multimeric activation complex with P/CAF and CBP/p300. Cell 90: 569–580.

    Article  CAS  Google Scholar 

  • Coste A, Louet JF, Lagouge M, Lerin C, Antal MC, Meziane H et al. (2008). The genetic ablation of SRC-3 protects against obesity and improves insulin sensitivity by reducing the acetylation of PGC-1{alpha}. Proc Natl Acad Sci USA 105: 17187–17192.

    Article  CAS  Google Scholar 

  • Costford SR, Bajpeyi S, Pasarica M, Albarado DC, Thomas SC, Xie H et al. (2009). Skeletal muscle NAMPT is induced by exercise in humans. Am J Physiol Endocrinol Metab 298: 117–126.

    Article  Google Scholar 

  • Evans JM, Donnelly LA, Emslie-Smith AM, Alessi DR, Morris AD . (2005). Metformin and reduced risk of cancer in diabetic patients. Br Med J 330: 1304–1305.

    Article  Google Scholar 

  • Feilchenfeldt J, Brundler MA, Soravia C, Totsch M, Meier CA . (2004). Peroxisome proliferator-activated receptors (PPARs) and associated transcription factors in colon cancer: reduced expression of PPARgamma-coactivator 1 (PGC-1). Cancer Lett 203: 25–33.

    Article  CAS  Google Scholar 

  • Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J et al. (2008). The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS One 3: e2020.

    Article  Google Scholar 

  • Friis RM, Wu BP, Reinke SN, Hockman DJ, Sykes BD, Schultz MC . (2009). A glycolytic burst drives glucose induction of global histone acetylation by picNuA4 and SAGA. Nucleic Acids Res 37: 3969–3980.

    Article  CAS  Google Scholar 

  • Fujino T, Kondo J, Ishikawa M, Morikawa K, Yamamoto TT . (2001). Acetyl-CoA synthetase 2, a mitochondrial matrix enzyme involved in the oxidation of acetate. J Biol Chem 276: 11420–11426.

    Article  CAS  Google Scholar 

  • Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA et al. (2008). Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev Cell 14: 661–673.

    Article  CAS  Google Scholar 

  • Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R et al. (2007). Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. EMBO J 26: 1913–1923.

    Article  CAS  Google Scholar 

  • Hallows WC, Lee S, Denu JM . (2006). Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases. Proc Natl Acad Sci USA 103: 10230–10235.

    Article  CAS  Google Scholar 

  • Hardie DG . (2007). AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 8: 774–785.

    Article  CAS  Google Scholar 

  • Hatzivassiliou G, Zhao F, Bauer DE, Andreadis C, Shaw AN, Dhanak D et al. (2005). ATP citrate lyase inhibition can suppress tumor cell growth. Cancer Cell 8: 311–321.

    Article  CAS  Google Scholar 

  • Hawley SA, Boudeau J, Reid JL, Mustard KJ, Udd L, Makela TP et al. (2003). Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J Biol 2: 28.

    Article  Google Scholar 

  • Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A et al. (2001). CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413: 179–183.

    Article  CAS  Google Scholar 

  • Houtkooper RH, Canto C, Wanders RJ, Auwerx J . (2010). The secret life of NAD+: an old metabolite controlling new metabolic signaling pathways. Endocr Rev 31: 194–223.

    Article  CAS  Google Scholar 

  • Imai S, Armstrong CM, Kaeberlein M, Guarente L . (2000). Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403: 795–800.

    Article  CAS  Google Scholar 

  • Jager S, Handschin C, St-Pierre J, Spiegelman BM . (2007). AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc Natl Acad Sci USA 104: 12017–12022.

    Article  Google Scholar 

  • Jiang WG, Douglas-Jones A, Mansel RE . (2003). Expression of peroxisome-proliferator activated receptor-gamma (PPARgamma) and the PPARgamma co-activator, PGC-1, in human breast cancer correlates with clinical outcomes. Int J Cancer 106: 752–757.

    Article  CAS  Google Scholar 

  • Kaeberlein M, McVey M, Guarente L . (1999). The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13: 2570–2580.

    Article  CAS  Google Scholar 

  • Kals M, Natter K, Thallinger GG, Trajanoski Z, Kohlwein SD . (2005). YPL.db2: the yeast protein localization database, version 2.0. Yeast 22: 213–218.

    Article  CAS  Google Scholar 

  • Kelly DP, Scarpulla RC . (2004). Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev 18: 357–368.

    Article  CAS  Google Scholar 

  • Kelly TJ, Lerin C, Haas W, Gygi SP, Puigserver P . (2009). GCN5-mediated transcriptional control of the metabolic coactivator PGC-1beta through lysine acetylation. J Biol Chem 284: 19945–19952.

    Article  CAS  Google Scholar 

  • Kouzarides T . (2000). Acetylation: a regulatory modification to rival phosphorylation? EMBO J 19: 1176–1179.

    Article  CAS  Google Scholar 

  • Kumar A, Agarwal S, Heyman JA, Matson S, Heidtman M, Piccirillo S et al. (2002). Subcellular localization of the yeast proteome. Genes Dev 16: 707–719.

    Article  CAS  Google Scholar 

  • Lerin C, Rodgers JT, Kalume DE, Kim SH, Pandey A, Puigserver P . (2006). GCN5 acetyltransferase complex controls glucose metabolism through transcriptional repression of PGC-1alpha. Cell Metab 3: 429–438.

    Article  CAS  Google Scholar 

  • Li X, Monks B, Ge Q, Birnbaum MJ . (2007). Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 447: 1012–1016.

    Article  CAS  Google Scholar 

  • Libby G, Donnelly LA, Donnan PT, Alessi DR, Morris AD, Evans JM . (2009). New users of metformin are at low risk of incident cancer: a cohort study among people with type 2 diabetes. Diabetes Care 32: 1620–1625.

    Article  CAS  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L . (2000). Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289: 2126–2128.

    Article  CAS  Google Scholar 

  • Luong A, Hannah VC, Brown MS, Goldstein JL . (2000). Molecular characterization of human acetyl-CoA synthetase, an enzyme regulated by sterol regulatory element-binding proteins. J Biol Chem 275: 26458–26466.

    Article  CAS  Google Scholar 

  • Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E et al. (2008). Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiol Rev 88: 841–886.

    Article  CAS  Google Scholar 

  • Nagy Z, Tora L . (2007). Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 26: 5341–5357.

    Article  CAS  Google Scholar 

  • Nemoto S, Fergusson MM, Finkel T . (2005). SIRT1 functionally interacts with the metabolic regulator and transcriptional coactivator PGC-1{alpha}. J Biol Chem 280: 16456–16460.

    Article  CAS  Google Scholar 

  • Olson BL, Hock MB, Ekholm-Reed S, Wohlschlegel JA, Dev KK, Kralli A et al. (2008). SCFCdc4 acts antagonistically to the PGC-1alpha transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis. Genes Dev 22: 252–264.

    Article  CAS  Google Scholar 

  • Ortolan E, Vacca P, Capobianco A, Armando E, Crivellin F, Horenstein A et al. (2002). CD157, the Janus of CD38 but with a unique personality. Cell Biochem Funct 20: 309–322.

    Article  CAS  Google Scholar 

  • Paine PL, Moore LC, Horowitz SB . (1975). Nuclear envelope permeability. Nature 254: 109–114.

    Article  CAS  Google Scholar 

  • Picard F, Gehin M, Annicotte J, Rocchi S, Champy MF, O'Malley BW et al. (2002). SRC-1 and TIF2 control energy balance between white and brown adipose tissues. Cell 111: 931–941.

    Article  CAS  Google Scholar 

  • Puigserver P, Adelmant G, Wu Z, Fan M, Xu J, O'Malley B et al. (1999). Activation of PPARgamma coactivator-1 through transcription factor docking. Science 286: 1368–1371.

    Article  CAS  Google Scholar 

  • Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F et al. (2003). Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423: 550–555.

    Article  CAS  Google Scholar 

  • Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM . (1998). A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92: 829–839.

    Article  CAS  Google Scholar 

  • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P . (2005). Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434: 113–118.

    Article  CAS  Google Scholar 

  • Rodgers JT, Puigserver P . (2007). Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1. Proc Natl Acad Sci USA 104: 12861–12866.

    Article  CAS  Google Scholar 

  • Rogina B, Helfand SL . (2004). Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101: 15998–16003.

    Article  CAS  Google Scholar 

  • Schreiber V, Dantzer F, Ame JC, de Murcia G . (2006). Poly(ADP-ribose): novel functions for an old molecule. Nat Rev Mol Cell Biol 7: 517–528.

    Article  CAS  Google Scholar 

  • Shore D, Squire M, Nasmyth KA . (1984). Characterization of two genes required for the position-effect control of yeast mating-type genes. EMBO J 3: 2817–2823.

    Article  CAS  Google Scholar 

  • Spencer TE, Jenster G, Burcin MM, Allis CD, Zhou J, Mizzen CA et al. (1997). Steroid receptor coactivator-1 is a histone acetyltransferase. Nature 389: 194–198.

    Article  CAS  Google Scholar 

  • Spiegelman BM, Heinrich R . (2004). Biological control through regulated transcriptional coactivators. Cell 119: 157–167.

    Article  CAS  Google Scholar 

  • Suwa M, Nakano H, Kumagai S . (2003). Effects of chronic AICAR treatment on fiber composition, enzyme activity, UCP3, and PGC-1 in rat muscles. J Appl Physiol 95: 960–968.

    Article  CAS  Google Scholar 

  • Szutowicz A, Kwiatkowski J, Angielski S . (1979). Lipogenetic and glycolytic enzyme activities in carcinoma and nonmalignant diseases of the human breast. Br J Cancer 39: 681–687.

    Article  CAS  Google Scholar 

  • Takahashi H, McCaffery JM, Irizarry RA, Boeke JD . (2006). Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription. Mol Cell 23: 207–217.

    Article  CAS  Google Scholar 

  • Tissenbaum HA, Guarente L . (2001). Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410: 227–230.

    Article  CAS  Google Scholar 

  • Trievel RC, Rojas JR, Sterner DE, Venkataramani RN, Wang L, Zhou J et al. (1999). Crystal structure and mechanism of histone acetylation of the yeast GCN5 transcriptional coactivator. Proc Natl Acad Sci USA 96: 8931–8936.

    Article  CAS  Google Scholar 

  • Turyn J, Schlichtholz B, Dettlaff-Pokora A, Presler M, Goyke E, Matuszewski M et al. (2003). Increased activity of glycerol 3-phosphate dehydrogenase and other lipogenic enzymes in human bladder cancer. Horm Metab Res 35: 565–569.

    Article  CAS  Google Scholar 

  • van den Berg MA, de Jong-Gubbels P, Kortland CJ, van Dijken JP, Pronk JT, Steensma HY . (1996). The two acetyl-coenzyme A synthetases of Saccharomyces cerevisiae differ with respect to kinetic properties and transcriptional regulation. J Biol Chem 271: 28953–28959.

    Article  CAS  Google Scholar 

  • Vega RB, Huss JM, Kelly DP . (2000). The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor alpha in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 20: 1868–1876.

    Article  CAS  Google Scholar 

  • Watkins G, Douglas-Jones A, Mansel RE, Jiang WG . (2004). The localisation and reduction of nuclear staining of PPARgamma and PGC-1 in human breast cancer. Oncol Rep 12: 483–488.

    CAS  Google Scholar 

  • Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB . (2009). ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324: 1076–1080.

    Article  CAS  Google Scholar 

  • Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V et al. (1999). Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98: 115–124.

    Article  CAS  Google Scholar 

  • Xu J, Wu RC, O'Malley BW . (2009). Normal and cancer-related functions of the p160 steroid receptor co-activator (SRC) family. Nat Rev Cancer 9: 615–630.

    Article  CAS  Google Scholar 

  • Yin PH, Lee HC, Chau GY, Wu YT, Li SH, Lui WY et al. (2004). Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. Br J Cancer 90: 2390–2396.

    Article  CAS  Google Scholar 

  • Yoo EJ, Chung JJ, Choe SS, Kim KH, Kim JB . (2006). Down-regulation of histone deacetylases stimulates adipocyte differentiation. J Biol Chem 281: 6608–6615.

    Article  CAS  Google Scholar 

  • Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J et al. (2001). Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413: 131–138.

    Article  CAS  Google Scholar 

  • Zakikhani M, Dowling R, Fantus IG, Sonenberg N, Pollak M . (2006). Metformin is an AMP kinase-dependent growth inhibitor for breast cancer cells. Cancer Res 66: 10269–10273.

    Article  CAS  Google Scholar 

  • Zhang Y, Ba Y, Liu C, Sun G, Ding L, Gao S et al. (2007). PGC-1alpha induces apoptosis in human epithelial ovarian cancer cells through a PPARgamma-dependent pathway. Cell Res 17: 363–373.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Ecole Polytechnique Fédérale de Lausanne, Swiss National Science Foundation, NIH (DK59820) and the European Research Council Ideas programme (Sirtuins; ERC-2008-AdG23118).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Auwerx.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeninga, E., Schoonjans, K. & Auwerx, J. Reversible acetylation of PGC-1: connecting energy sensors and effectors to guarantee metabolic flexibility. Oncogene 29, 4617–4624 (2010). https://doi.org/10.1038/onc.2010.206

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.206

Keywords

This article is cited by

Search

Quick links