Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Therapeutic CDK4/6 inhibition in breast cancer: key mechanisms of response and failure

Abstract

A hallmark of cancer is the deregulation of cell-cycle machinery, ultimately facilitating aberrant proliferation that fuels tumorigenesis and disease progression. Particularly, in breast cancers, cyclin D1 has a crucial role in the development of disease. Recently, a highly specific inhibitor of CDK4/6 activity (PD-0332991) has been developed that may have efficacy in the treatment of breast cancer. To interrogate the utility of PD-0332991 in treating breast cancers, therapeutic response was evaluated on a panel of breast cancer cell lines. These analyses showed that the chronic loss of Rb is specifically associated with evolution to a CDK4/6-independent state and, ultimately, resistance to PD-0332991. However, to interrogate the functional consequence of Rb directly, knockdown experiments were performed in models that represent immortalized mammary epithelia and multiple subtypes of breast cancer. These studies showed a highly specific role for Rb in mediating the response to CDK4/6 inhibition that was dependent on transcriptional repression manifest through E2F, and the ability to attenuate CDK2 activity. Acquired resistance to PD-03322991 was specifically associated with attenuation of CDK2 inhibitors, indicating that redundancy in CDK functions represents a determinant of therapeutic failure. Despite these caveats, in specific models, PD-0332991 was a particularly effective therapy, which induced Rb-dependent cytostasis. Combined, these findings indicate the critical importance of fully understanding cell-cycle regulatory pathways in directing the utilization of CDK inhibitors in the clinic.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Abukhdeir AM, Park BH . (2008). P21 and p27: roles in carcinogenesis and drug resistance. Expert Rev Mol Med 10: e19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alle KM, Henshall SM, Field AS, Sutherland RL . (1998). Cyclin D1 protein is overexpressed in hyperplasia and intraductal carcinoma of the breast. Clin Cancer Res 4: 847–854.

    CAS  PubMed  Google Scholar 

  • Ariazi EA, Ariazi JL, Cordera F, Jordan VC . (2006). Estrogen receptors as therapeutic targets in breast cancer. Curr Top Med Chem 6: 181–202.

    Article  CAS  PubMed  Google Scholar 

  • Barker S . (2003). Anti-estrogens in the treatment of breast cancer: current status and future directions. Curr Opin Investig Drugs 4: 652–657.

    CAS  PubMed  Google Scholar 

  • Borg A, Zhang QX, Alm P, Olsson H, Sellberg G . (1992). The retinoblastoma gene in breast cancer: allele loss is not correlated with loss of gene protein expression. Cancer Res 52: 2991–2994.

    CAS  PubMed  Google Scholar 

  • Brenner AJ, Paladugu A, Wang H, Olopade OI, Dreyling MH, Aldaz CM . (1996). Preferential loss of expression of p16(INK4a) rather than p19(ARF) in breast cancer. Clin Cancer Res 2: 1993–1998.

    CAS  PubMed  Google Scholar 

  • Buzdar AU . (2009). Role of biologic therapy and chemotherapy in hormone receptor- and HER2-positive breast cancer. Ann Oncol 20: 993–999.

    Article  CAS  PubMed  Google Scholar 

  • Dannenberg JH, te Riele HP . (2006). The retinoblastoma gene family in cell cycle regulation and suppression of tumorigenesis. Results Probl Cell Differ 42: 183–225.

    Article  CAS  PubMed  Google Scholar 

  • Diehl JA, Zindy F, Sherr CJ . (1997). Inhibition of cyclin D1 phosphorylation on threonine-286 prevents its rapid degradation via the ubiquitin-proteasome pathway. Genes Dev 11: 957–972.

    Article  CAS  PubMed  Google Scholar 

  • Donovan JC, Milic A, Slingerland JM . (2001). Constitutive MEK/MAPK activation leads to p27(Kip1) deregulation and antiestrogen resistance in human breast cancer cells. J Biol Chem 276: 40888–40895.

    Article  CAS  PubMed  Google Scholar 

  • Dyson N . (1998). The regulation of E2F by pRB-family proteins. Genes Dev 12: 2245–2262.

    Article  CAS  PubMed  Google Scholar 

  • Encarnacion CA, Ciocca DR, McGuire WL, Clark GM, Fuqua SA, Osborne CK . (1993). Measurement of steroid hormone receptors in breast cancer patients on tamoxifen. Breast Cancer Res Treat 26: 237–246.

    Article  CAS  PubMed  Google Scholar 

  • Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E et al. (2004). Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol Cancer Ther 3: 1427–1438.

    CAS  PubMed  Google Scholar 

  • Geng Y, Whoriskey W, Park MY, Bronson RT, Medema RH, Li T et al. (1999). Rescue of cyclin D1 deficiency by knockin cyclin E. Cell 97: 767–777.

    Article  CAS  PubMed  Google Scholar 

  • Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson C et al. (1994). Amplification and overexpression of cyclin D1 in breast cancer detected by immunohistochemical staining. Cancer Res 54: 1812–1817.

    CAS  PubMed  Google Scholar 

  • Halaban R, Miglarese MR, Smicun Y, Puig S . (1998). Melanomas, from the cell cycle point of view (review). Int J Mol Med 1: 419–425.

    CAS  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Harari D, Yarden Y . (2000). Molecular mechanisms underlying ErbB2/HER2 action in breast cancer. Oncogene 19: 6102–6114.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ . (2009). Cancer statistics, 2009. CA Cancer J Clin 59: 225–249.

    Article  PubMed  Google Scholar 

  • Jensen EV, Jordan VC . (2003). The estrogen receptor: a model for molecular medicine. Clin Cancer Res 9: 1980–1989.

    CAS  PubMed  Google Scholar 

  • Keyomarsi K, O'Leary N, Molnar G, Lees E, Fingert HJ, Pardee AB . (1994). Cyclin E, a potential prognostic marker for breast cancer. Cancer Res 54: 380–385.

    CAS  PubMed  Google Scholar 

  • Keyomarsi K, Pardee AB . (1993). Redundant cyclin overexpression and gene amplification in breast cancer cells. Proc Natl Acad Sci USA 90: 1112–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Knudsen ES, Knudsen KE . (2008). Tailoring to RB: tumour suppressor status and therapeutic response. Nat Rev Cancer 8: 714–724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • LaBaer J, Garrett MD, Stevenson LF, Slingerland JM, Sandhu C, Chou HS et al. (1997). New functional activities for the p21 family of CDK inhibitors. Genes Dev 11: 847–862.

    Article  CAS  PubMed  Google Scholar 

  • Loden M, Stighall M, Nielsen NH, Roos G, Emdin SO, Ostlund H et al. (2002). The cyclin D1 high and cyclin E high subgroups of breast cancer: separate pathways in tumorogenesis based on pattern of genetic aberrations and inactivation of the pRb node. Oncogene 21: 4680–4690.

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M . (2001). To cycle or not to cycle: a critical decision in cancer. Nat Rev Cancer 1: 222–231.

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M . (2005). Mammalian cyclin-dependent kinases. Trends Biochem Sci 30: 630–641.

    Article  CAS  PubMed  Google Scholar 

  • Mittnacht S . (1998). Control of pRB phosphorylation. Curr Opin Genet Dev 8: 21–27.

    Article  CAS  PubMed  Google Scholar 

  • Nielsen NH, Emdin SO, Cajander J, Landberg G . (1997). Deregulation of cyclin E and D1 in breast cancer is associated with inactivation of the retinoblastoma protein. Oncogene 14: 295–304.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto A, Demetrick DJ, Spillare EA, Hagiwara K, Hussain SP, Bennett WP et al. (1994). p16INK4 mutations and altered expression in human tumors and cell lines. Cold Spring Harb Symp Quant Biol 59: 49–57.

    Article  CAS  PubMed  Google Scholar 

  • Ormandy CJ, Musgrove EA, Hui R, Daly RJ, Sutherland RL . (2003). Cyclin D1, EMS1 and 11q13 amplification in breast cancer. Breast Cancer Res Treat 78: 323–335.

    Article  CAS  PubMed  Google Scholar 

  • Ortega S, Malumbres M, Barbacid M . (2002). Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim Biophys Acta 1602: 73–87.

    CAS  PubMed  Google Scholar 

  • Otterson GA, Kratzke RA, Coxon A, Kim YW, Kaye FJ . (1994). Absence of p16INK4 protein is restricted to the subset of lung cancer lines that retains wildtype RB. Oncogene 9: 3375–3378.

    CAS  PubMed  Google Scholar 

  • Pietilainen T, Lipponen P, Aaltomaa S, Eskelinen M, Kosma VM, Syrjanen K . (1995). Expression of retinoblastoma gene protein (Rb) in breast cancer as related to established prognostic factors and survival. Eur J Cancer 31A: 329–333.

    Article  CAS  PubMed  Google Scholar 

  • Planas-Silva MD, Weinberg RA . (1997). Estrogen-dependent cyclin E-cdk2 activation through p21 redistribution. Mol Cell Biol 17: 4059–4069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poon RY, Toyoshima H, Hunter T . (1995). Redistribution of the CDK inhibitor p27 between different cyclin.CDK complexes in the mouse fibroblast cell cycle and in cells arrested with lovastatin or ultraviolet irradiation. Mol Biol Cell 6: 1197–1213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter PL, Malone KE, Heagerty PJ, Alexander GM, Gatti LA, Firpo EJ et al. (1997). Expression of cell-cycle regulators p27Kip1 and cyclin E, alone and in combination, correlate with survival in young breast cancer patients. Nat Med 3: 222–225.

    Article  CAS  PubMed  Google Scholar 

  • Prall OW, Sarcevic B, Musgrove EA, Watts CK, Sutherland RL . (1997). Estrogen-induced activation of Cdk4 and Cdk2 during G1-S phase progression is accompanied by increased cyclin D1 expression and decreased cyclin-dependent kinase inhibitor association with cyclin E-Cdk2. J Biol Chem 272: 10882–10894.

    Article  CAS  PubMed  Google Scholar 

  • Rizzi F, Belloni L, Crafa P, Lazzaretti M, Remondini D, Ferretti S et al. (2008). A novel gene signature for molecular diagnosis of human prostate cancer by RT-qPCR. PLoS One 3: e3617.

    Article  PubMed  PubMed Central  Google Scholar 

  • Robertson JF . (1996). Oestrogen receptor: a stable phenotype in breast cancer. Br J Cancer 73: 5–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage J, Mulligan GJ, Attardi LD, Miller A, Chen S, Williams B et al. (2000). Targeted disruption of the three Rb-related genes leads to loss of G(1) control and immortalization. Genes Dev 14: 3037–3050.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Santamaria D, Ortega S . (2006). Cyclins and CDKS in development and cancer: lessons from genetically modified mice. Front Biosci 11: 1164–1188.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro GI . (2006). Cyclin-dependent kinase pathways as targets for cancer treatment. J Clin Oncol 24: 1770–1783.

    Article  CAS  PubMed  Google Scholar 

  • Shapiro GI, Edwards CD, Kobzik L, Godleski J, Richards W, Sugarbaker DJ et al. (1995). Reciprocal Rb inactivation and p16INK4 expression in primary lung cancers and cell lines. Cancer Res 55: 505–509.

    CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM . (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  • Stengel KR, Thangavel C, Solomon DA, Angus SP, Zheng Y, Knudsen ES . (2009). Retinoblastoma/p107/p130 pocket proteins: protein dynamics and interactions with target gene promoters. J Biol Chem 284: 19265–19271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sutherland RL, Hall RE, Taylor IW . (1983). Cell proliferation kinetics of MCF-7 human mammary carcinoma cells in culture and effects of tamoxifen on exponentially growing and plateau-phase cells. Cancer Res 43: 3998–4006.

    CAS  PubMed  Google Scholar 

  • Swarbrick A, Lee CS, Sutherland RL, Musgrove EA . (2000). Cooperation of p27(Kip1) and p18(INK4c) in progestin-mediated cell cycle arrest in T-47D breast cancer cells. Mol Cell Biol 20: 2581–2591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takano Y, Takenaka H, Kato Y, Masuda M, Mikami T, Saegusa M et al. (1999). Cyclin D1 overexpression in invasive breast cancers: correlation with cyclin-dependent kinase 4 and oestrogen receptor overexpression, and lack of correlation with mitotic activity. J Cancer Res Clin Oncol 125: 505–512.

    Article  CAS  PubMed  Google Scholar 

  • Toogood PL, Harvey PJ, Repine JT, Sheehan DJ, VanderWel SN, Zhou H et al. (2005). Discovery of a potent and selective inhibitor of cyclin-dependent kinase 4/6. J Med Chem 48: 2388–2406.

    Article  CAS  PubMed  Google Scholar 

  • Vaughn DJ, Flaherty K, Lal P, Gallagher M, O′Dwyer P, Wilner K et al. (2009). Treatment of growing teratoma syndrome. N Engl J Med 360: 423–424.

    Article  CAS  PubMed  Google Scholar 

  • Vivar OI, Lin CL, Firestone GL, Bjeldanes LF . (2009). 3,3′-Diindolylmethane induces a G(1) arrest in human prostate cancer cells irrespective of androgen receptor and p53 status. Biochem Pharmacol 78: 469–476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakimoto N, Wolf I, Yin D, O'Kelly J, Akagi T, Abramovitz L et al. (2008). Nonsteroidal anti-inflammatory drugs suppress glioma via 15-hydroxyprostaglandin dehydrogenase. Cancer Res 68: 6978–6986.

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang J, Blaser BW, Duchemin AM, Kusewitt DF, Liu T et al. (2007). Pharmacologic inhibition of CDK4/6: mechanistic evidence for selective activity or acquired resistance in acute myeloid leukemia. Blood 110: 2075–2083.

    Article  CAS  PubMed  Google Scholar 

  • Wang TC, Cardiff RD, Zukerberg L, Lees E, Arnold A, Schmidt EV . (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice. Nature 369: 669–671.

    Article  CAS  PubMed  Google Scholar 

  • Watts CK, Brady A, Sarcevic B, deFazio A, Musgrove EA, Sutherland RL . (1995). Antiestrogen inhibition of cell cycle progression in breast cancer cells in associated with inhibition of cyclin-dependent kinase activity and decreased retinoblastoma protein phosphorylation. Mol Endocrinol 9: 1804–1813.

    CAS  PubMed  Google Scholar 

  • Yeager T, Stadler W, Belair C, Puthenveettil J, Olopade O, Reznikoff C . (1995). Increased p16 levels correlate with pRb alterations in human urothelial cells. Cancer Res 55: 493–497.

    CAS  PubMed  Google Scholar 

  • Yu Q, Geng Y, Sicinski P . (2001). Specific protection against breast cancers by cyclin D1 ablation. Nature 411: 1017–1021.

    Article  CAS  PubMed  Google Scholar 

  • Yu Q, Sicinska E, Geng Y, Ahnstrom M, Zagozdzon A, Kong Y et al. (2006). Requirement for CDK4 kinase function in breast cancer. Cancer Cell 9: 23–32.

    Article  CAS  PubMed  Google Scholar 

  • Zagorski WA, Knudsen ES, Reed MF . (2007). Retinoblastoma deficiency increases chemosensitivity in lung cancer. Cancer Res 67: 8264–8273.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E S Knudsen.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dean, J., Thangavel, C., McClendon, A. et al. Therapeutic CDK4/6 inhibition in breast cancer: key mechanisms of response and failure. Oncogene 29, 4018–4032 (2010). https://doi.org/10.1038/onc.2010.154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.154

Keywords

This article is cited by

Search

Quick links