Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Ovarian cancer ascites protects from TRAIL-induced cell death through αvβ5 integrin-mediated focal adhesion kinase and Akt activation

Abstract

Interactions between ovarian cancer cells and the surrounding tumor microenvironment are not well characterized. We have earlier shown that ovarian cancer ascites induces Akt activation and protect tumor cells from TRAIL-induced apoptosis. Here, we investigated the mechanism by which ascites activates Akt. The ability of ovarian cancer ascites to activate Akt and inhibit TRAIL-induced cell death and caspase activity was decreased by heat inactivation, but was retained in ascites fractions >5 kDa. The survival promoting activity of ascites was not affected by inhibitors of growth factor receptor including epidermal growth factor receptor (EGFR), VEGFR, FGFR, Her2/neu, and IGF-R1. However, this activity was inhibited by an αvβ5 integrin-blocking antibody, but not by blocking antibodies against αvβ3, β1, or β3 integrins. αvβ5 integrin-blocking antibodies also inhibited ascites-induced Akt phosphorylation and c-FLIPs up-regulation. Ovarian cancer ascites induced a rapid phosphorylation of focal adhesion kinase (FAK), which closely correlated with the phosphorylation of Akt overtime. FAK phosphorylation was strongly inhibited by αvβ5 integrin-blocking antibodies. Depletion of FAK content by RNA interference was also associated with inhibition of ascites-mediated Akt activation and survival. These results suggest that ovarian cancer ascites induces FAK and Akt activation in an αvβ5 integrin-dependent pathway, which confers protection from TRAIL-induced cell death and caspase activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  • Abendstein B, Stadimann S, Knabbe C, Buck M, Muller-Holzner E, Zeimet AG et al. (2000). Regulation of transforming growth factor-beta secretion by human peritoneal mesothelial and ovarian carcinoma cells. Cytokine 12: 1115–1119.

    Article  CAS  Google Scholar 

  • Alper O, Bergmann-Leitner ES, Bennett TA, Hacker NF, Stromberg K, Stetler-Stevenson WG . (2001). Epidermal growth factor receptor signaling and the invasive phenotype of ovarian carcinoma cells. J Natl Cancer Inst 93: 1375–1384.

    Article  CAS  Google Scholar 

  • Carreiras F, Rigot V, Cruet S, Andre F, Gauduchon P, Marvaldi J . (1999). Migration properties of the human ovarian adenocarcinoma cell line IGROV1: importance of alpha(v)beta3 integrins and vitronectin. Int J Cancer 80: 285–294.

    Article  CAS  Google Scholar 

  • Contos JJ, Ishii I, Chun J . (2000). Lysophosphatidic acid receptors. Mol Pharmacol 58: 1188–1196.

    Article  CAS  Google Scholar 

  • Cruet-Hennequart S, Maubant S, Luis J, Gauduchon P, Staedel C, Dedhar S . (2003). Alpha(v) integrins regulate cell proliferation through integrin-linked kinase (ILK) in ovarian cancer cells. Oncogene 22: 1688–1702.

    Article  CAS  Google Scholar 

  • Damiano JS . (2002). Integrins as novel drug targets for overcoming innate drug resistance. Curr Cancer Drug Targets 2: 37–43.

    Article  CAS  Google Scholar 

  • Dan HC, Jiang K, Coppola D, Hamilton A, Nicosia SV, Sebti SM et al. (2004). Phosphatidylinositol-3-OH kinase/AKT and survivin pathways as critical targets for geranylgeranyltransferase I inhibitor-induced apoptosis. Oncogene 23: 706–715.

    Article  CAS  Google Scholar 

  • Davidson B, Espina V, Steinberg SM, Florenes VA, Liotta LA, Kristensen GB et al. (2006). Proteomic analysis of malignant ovarian cancer effusions as a tool for biologic and prognostic profiling. Clin Cancer Res 12: 791–799.

    Article  CAS  Google Scholar 

  • Fornaro M, Plescia J, Chheang S, Tallini G, Zhu Y-M, King M et al. (2003). Fibronectin protects prostate cancer cells from tumor necrosis factor-alpha-induced apoptosis via the AKT/survivin pathway. J Biol Chem 278: 50402–50411.

    Article  CAS  Google Scholar 

  • Fraser M, Leung BM, Yan X, Dan HC, Cheng JQ, Tsang BK . (2003). Akt-mediated cisplatin resistance in ovarian cancer: modulation of p53 action on caspase-dependent mitochondrial death pathway. Cancer Res 63: 7081–7088.

    CAS  Google Scholar 

  • Frisch SM, Ruoslahti E . (1997). Integrins and anoikis. Curr Opin Cell Biol 9: 701–706.

    Article  CAS  Google Scholar 

  • Goetzl EJ, Dolezalova H, Kong Y, HU Y-L, Jaffe RB, Kalli KR et al. (1999). Distinctive expression and functions of the type 4 endothelial differentiation gene-encoded G protein-coupled receptor for lysophosphatidic acid in ovarian cancer. Cancer Res 59: 5370–5375.

    CAS  Google Scholar 

  • Gillan L, Matei D, Fishman DA, Gerbin CS, Karlan BY, Chang DD . (2002). Periostin secreted by epithelial ovarian carcinoma is a ligand for αvβ3 and αvβ5 integrins and promotes cell motility. Cancer Res 62: 5358–5364.

    CAS  Google Scholar 

  • Graves LE, Ariztia EV, Navari JR, Matzel HJ, Stack S, Fishman DA . (2004). Proinvasive properties of ovarian cancer ascites-derived membrane vesicles. Cancer Res 64: 7045–7049.

    Article  CAS  Google Scholar 

  • Hynes RO . (1992). Integrins: versatility, modulation, and signaling in cell adhesion. Cell 69: 11–25.

    Article  CAS  Google Scholar 

  • Kandasamy K, Srivastava RK . (2002). Role of the phosphatidylinositol 3′-kinase/PTEN/Akt kinase pathway in tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in non-small cell lung cancer cells. Cancer Res 62: 4929–4937.

    CAS  Google Scholar 

  • Kang YC, Kim KM, Lee KS, Namkoong S, Lee SJ, Han JA et al. (2004). Serum bioactive lysophospholipids prevent TRAIL-induced apoptosis via PI3K/Akt-dependent cFLIP expression and Bad phosphorylation. Cell Death Differ 11: 1287–1298.

    Article  CAS  Google Scholar 

  • Kobayashi-Sakamoto M, Isogai E, Hirose K, Chiba I . (2008). Role of αv integrin in osteoprotegerin-induced endothelial cell migration and proliferation. Microvasc Res 76: 139–144.

    Article  CAS  Google Scholar 

  • Kohler M, Janz I, Winter HO, Wagner E, Bauknecht T . (1989). The expression of EGF receptors, EGF-like factors and c-myc in ovarian and cervical carcinomas and their potential clinical significance. Anticancer Res 9: 1537–1547.

    CAS  Google Scholar 

  • Kohler M, Bauknecht T, Grimm M, Birmelin G, Kommoss F, Wagner E . (1992). Epidermal growth factor receptor and transforming growth factor alpha expression in human ovarian carcinomas. Eur J Cancer 28: 1432–1437.

    Article  Google Scholar 

  • Lane D, Robert V, Grondin R, Rancourt C, Piché A . (2007). Malignant ascites protect against TRAIL-induced apoptosis by activating the PI3K/Akt pathway in human ovarian cancer cells. Int J Cancer 121: 1227–1237.

    Article  CAS  Google Scholar 

  • Lane D, Cartier A, Rancourt R, Piché A . (2008). Cell detachment modulates TRAIL resistance in ovarian cancer cells by downregulating the phosphatidylinositol 3-kinase/Akt pathway. Int J Gynecol Oncol 18: 670–676.

    Article  CAS  Google Scholar 

  • Matei D, Emerson RE, Lai Y-C, Baldridge LA, Rao J, Yiannoutsos C et al. (2006). Autocrine activation of PDGFRalpha promotes the progression of ovarian cancer. Oncogene 25: 2060–2069.

    Article  CAS  Google Scholar 

  • Matter ML, Ruoslahti E . (2001). A signaling pathway from the alpha5beta1 and alpha(v)beta3 integrins that elevates bcl-2 transcription. J Biol Chem 276: 27757–27763.

    Article  CAS  Google Scholar 

  • Mills GB, May C, McGill M, Rofiman CM, Mellors A . (1988). A putative new growth factor in ascitic fluid from ovarian cancer patients: identification, characterization, and mechanism of action. Cancer Res 48: 1066–1071.

    CAS  Google Scholar 

  • Mills GB, Moolenaar WH . (2003). The emerging role of lysophosphatidic acid in cancer. Nat Rev Cancer 3: 582–591.

    Article  CAS  Google Scholar 

  • Miyamoto S, Hirata M, Yamazaki A, Kageyama T, Hasuwa H, Mizushima H et al. (2004). Heparin-binding EGF-like growth factor is a promising target for ovarian cancer therapy. Cancer Res 64: 5720–5727.

    Article  CAS  Google Scholar 

  • Noguchi K, Ishii S, Shimizu T . (2003). Identification of p2y9/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. J Biol Chem 278: 25600–25606.

    Article  CAS  Google Scholar 

  • Puiffe M-L, Le Page C, Filali-Mouhim A, Zietarska M, Ouellet V, Tonin PN et al. (2007). Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia 9: 820–829.

    Article  CAS  Google Scholar 

  • Puls LE, Duniho T, Hunter JE, Kryscho R, Blackhurst D, Gallion H . (1996). The prognostic implication of ascites in advanced-stage ovarian cancer. Gynecol Oncol 61: 109–112.

    Article  CAS  Google Scholar 

  • Ren J, Xiao Y-J, Singh LS, Zhao X, Zhao Z, Feng L et al. (2006). Lysophosphatidic acid is constitutively produced by human peritoneal mesothelial cells and enhances adhesion, migration, and invasion of ovarian cancer cells. Cancer Res 66: 3006–3014.

    Article  CAS  Google Scholar 

  • Saltzman AK, Hartenbach EM, Carter JR, Contreras DN, Twiggs LB, Carson LF et al. (1999). Transforming growth factor-alpha levels in the serum and ascites of patients with advanced epithelial ovarian cancer. Gynecol Obstet Invest 47: 200–204.

    Article  CAS  Google Scholar 

  • Shen-Gunther J, Mannel RS . (2002). Ascites as a predictor of ovarian malignancy. Gynecol Oncol 87: 77–83.

    Article  Google Scholar 

  • Sivaprasad U, Shankar E, Basu A . (2007). Downregulation of Bid is associated with PKCepsilon-mediated TRAIL resistance. Cell Death Differ 14: 851–860.

    Article  CAS  Google Scholar 

  • Stoica A, Saceda M, Fakhro A, Joyner M, Martin MB . (2000). Role of insulin-like growth factor-I in regulating estrogen receptor-alpha gene expression. J Cell Biochem 76: 605–614.

    Article  CAS  Google Scholar 

  • Stupack DG, Cheresh DA . (2002). Get a ligand, get a life: integrins, signaling and cell survival. J Cell Science 115: 3729–3738.

    Article  CAS  Google Scholar 

  • Uhm JH, Dooley NP, Kyritsis AP, Rao JS . (1999). Vitronectin, a glioma-derived extracellular matrix protein, protects tumor cells from apoptotic death. Clin Cancer Res 5: 1587–1594.

    CAS  Google Scholar 

  • Westermann AM, Havik E, Postma FR, Beijenen JH, Dalesio O, Moolenaar WH et al. (1998). Malignant effusions contain lysophosphatidic acid (LPA)-like activity. Ann Oncol 9: 437–442.

    Article  CAS  Google Scholar 

  • Yamada T, Sato K, Komachi M, Malchinkhuu E, Tobo M, Kimura T et al. (2004). Lysophosphatidic acid (LPA) in malignant ascites stimulates motility of human pancreatic cancer cells through LPA1. J Biol Chem 279: 6595–6605.

    Article  CAS  Google Scholar 

  • Yang X, Fraser M, Moll UM, Basak A, Tsang BK . (2006). Akt-mediated cisplatin resistance in ovarian cancer: modulation of p53 action on caspase-dependent mitochondrial death pathway. Cancer Res 66: 3126–3136.

    Article  CAS  Google Scholar 

  • Yarden Y, Sliwkowski MX . (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137.

    Article  CAS  Google Scholar 

  • Ye X, Ishii I, Kingsbury MA, Chun J . (2002). Lysophosphatidic acid as a novel cell survival/apoptotic factor. Biochim Biophys Acta 1585: 108–113.

    Article  CAS  Google Scholar 

  • Zhang Z, Vuori K, Reed JC, Ruslahti E . (1995). The alpha 5 beta 1 integrin supports survival of cells on fibronectin and up-regulates Bcl-2 expression. Proc Natl Acad Sci USA 92: 6161–6165.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the Cancer Research Society. We thank the Tumor Bank from the ‘Réseau de Recherche en Cancer du Fond de Recherche en Santé du Québec’ for providing the ovarian cancer ascites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Piché.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lane, D., Goncharenko-Khaider, N., Rancourt, C. et al. Ovarian cancer ascites protects from TRAIL-induced cell death through αvβ5 integrin-mediated focal adhesion kinase and Akt activation. Oncogene 29, 3519–3531 (2010). https://doi.org/10.1038/onc.2010.107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.107

Keywords

This article is cited by

Search

Quick links