Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors

Abstract

Novel therapeutic agents combined with innovative modes of delivery and non-invasive imaging of drug delivery, pharmacokinetics and efficacy are crucial in developing effective clinical anticancer therapies. In this study, we have created and characterized multiple novel variants of anti-angiogenic protein thrombospondin (aaTSP-1) that comprises unique regions of three type-I-repeats of TSP-1 and used engineered human neural stem cells (hNSC) to provide sustained on-site delivery of secretable aaTSP-1 to tumor-vasculature. We show that hNSC-aaTSP-1 has anti-angiogenic effect on human brain and dermal microvascular endothelial cells co-cultured with established glioma cells and CD133+ glioma-initiating cells. Using human glioma cells and hNSC engineered with different combinations of fluorescent and bioluminescent marker proteins and employing multi-modality imaging techniques, we show that aaTSP-1 targets the vascular-component of gliomas and a single administration of hNSC-aaTSP-1 markedly reduces tumor vessel-density that results in inhibition of tumor-progression and increased survival in mice bearing highly malignant human gliomas. We also show that therapeutic hNSC do not proliferate and remain in an un-differentiated state in the brains of glioma-bearing mice. This study provides a platform for accelerated development of future cell-based therapies for cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W et al. (2000). Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci USA 97: 12846–12851.

    Article  CAS  Google Scholar 

  • Anderson JC, Grammer JR, Wang W, Nabors LB, Henkin J, Stewart Jr JE et al. (2007). ABT-510, a modified type 1 repeat peptide of thrombospondin, inhibits malignant glioma growth in vivo by inhibiting angiogenesis. Cancer Biol Ther 6: 454–462.

    Article  CAS  Google Scholar 

  • Asaishi K, Endrich B, Gotz A, Messmer K . (1981). Quantitative analysis of microvascular structure and function in the amelanotic melanoma A-Mel-3. Cancer Res 41: 1898–1904.

    CAS  Google Scholar 

  • Batchelor TT, Sorensen AG, di Tomaso E, Zhang WT, Duda DG, Cohen KS et al. (2007). AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11: 83–95.

    Article  CAS  Google Scholar 

  • Bergers G, Benjamin LE . (2003). Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3: 401–410.

    Article  CAS  Google Scholar 

  • Bogdanov Jr A, Marecos E, Cheng HC, Chandrasekaran L, Krutzsch HC, Roberts DD et al. (1999). Treatment of experimental brain tumors with trombospondin-1 derived peptides: an in vivo imaging study. Neoplasia 1: 438–445.

    Article  CAS  Google Scholar 

  • Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B et al. (2007). A perivascular niche for brain tumor stem cells. Cancer Cell 11: 69–82.

    Article  CAS  Google Scholar 

  • Capillo M, Mancuso P, Gobbi A, Monestiroli S, Pruneri G, Dell′Agnola C et al. (2003). Continuous infusion of endostatin inhibits differentiation, mobilization, and clonogenic potential of endothelial cell progenitors. Clin Cancer Res 9: 377–382.

    CAS  Google Scholar 

  • Carmeliet P, Jain RK . (2000). Angiogenesis in cancer and other diseases. Nature 407: 249–257.

    Article  CAS  Google Scholar 

  • Corsten MF, Shah K . (2008). Therapeutic stem-cells for cancer treatment: hopes and hurdles in tactical warfare. Lancet Oncol 9: 376–384.

    Article  Google Scholar 

  • Drixler TA, Borel Rinkes IH, Ritchie ED, van Vroonhoven TJ, Gebbink MF, Voest EE . (2000). Continuous administration of angiostatin inhibits accelerated growth of colorectal liver metastases after partial hepatectomy. Cancer Res 60: 1761–1765.

    CAS  Google Scholar 

  • Duda DG, Batchelor TT, Willett CG, Jain RK . (2007). VEGF-targeted cancer therapy strategies: current progress, hurdles and future prospects. Trends Mol Med 13: 223–230.

    Article  CAS  Google Scholar 

  • Ehtesham M, Kabos P, Gutierrez MA, Chung NH, Griffith TS, Black KL et al. (2002). Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 62: 7170–7174.

    CAS  Google Scholar 

  • Gondi CS, Lakka SS, Dinh DH, Olivero WC, Gujrati M, Rao JS . (2004). Downregulation of uPA, uPAR and MMP-9 using small, interfering, hairpin RNA (siRNA) inhibits glioma cell invasion, angiogenesis and tumor growth. Neuron Glia Biol 1: 165–176.

    Article  Google Scholar 

  • Guerin C, Laterra J . (1997). Regulation of angiogenesis in malignant gliomas. Exs 79: 47–64.

    CAS  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  Google Scholar 

  • Hoekstra R, de Vos FY, Eskens FA, de Vries EG, Uges DR, Knight R et al. (2006). Phase I study of the thrombospondin-1-mimetic angiogenesis inhibitor ABT-510 with 5-fluorouracil and leucovorin: a safe combination. Eur J Cancer 42: 467–472.

    Article  CAS  Google Scholar 

  • Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT . (2007). Angiogenesis in brain tumors. Nat Rev Neurosci 8: 610–622.

    Article  CAS  Google Scholar 

  • Kisker O, Becker CM, Prox D, Fannon M, D'Amato R, Flynn E et al. (2001). Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res 61: 7669–7674.

    CAS  Google Scholar 

  • Kock N, Kasmieh R, Weissleder R, Shah K . (2007). Tumor therapy mediated by lentiviral expression of shBcl-2 and S-TRAIL. Neoplasia 9: 435–442.

    Article  CAS  Google Scholar 

  • Lawler J, Detmar M . (2004). Tumor progression: the effects of thrombospondin-1 and -2. Int J Biochem Cell Biol 36: 1038–1045.

    Article  CAS  Google Scholar 

  • Liu P, Wang Y, Li YH, Yang C, Zhou YL, Li B et al. (2003). Adenovirus-mediated gene therapy with an antiangiogenic fragment of thrombospondin-1 inhibits human leukemia xenograft growth in nude mice. Leuk Res 27: 701–708.

    Article  CAS  Google Scholar 

  • Markovic SN, Suman VJ, Rao RA, Ingle JN, Kaur JS, Erickson LA et al. (2007). A phase II study of ABT-510 (thrombospondin-1 analog) for the treatment of metastatic melanoma. Am J Clin Oncol 30: 303–309.

    Article  CAS  Google Scholar 

  • Montet X, Figueiredo JL, Alencar H, Ntziachristos V, Mahmood U, Weissleder R . (2007). Tomographic fluorescence imaging of tumor vascular volume in mice. Radiology 242: 751–758.

    Article  Google Scholar 

  • Naldini L, Blomer U, Gage FH, Trono D, Verma IM . (1996). Efficient transfer, integration, and sustained long-term expression of the transgene in adult rat brains injected with a lentiviral vector. Proc Natl Acad Sci USA 93: 11382–11388.

    Article  CAS  Google Scholar 

  • Papetti M, Herman IM . (2002). Mechanisms of normal and tumor-derived angiogenesis. Am J Physiol Cell Physiol 282: C947–C970.

    Article  CAS  Google Scholar 

  • Rusk A, McKeegan E, Haviv F, Majest S, Henkin J, Khanna C . (2006). Preclinical evaluation of antiangiogenic thrombospondin-1 peptide mimetics, ABT-526 and ABT-510, in companion dogs with naturally occurring cancers. Clin Cancer Res 12: 7444–7455.

    Article  CAS  Google Scholar 

  • Sasportas LS, Kasmieh R, Wakimoto H, Hingtgen S, van de Water JA, Mohapatra G et al. (2009). Assessment of therapeutic efficacy and fate of engineered human mesenchymal stem cells for cancer therapy. Proc Natl Acad Sci USA 106: 4822–4827.

    Article  CAS  Google Scholar 

  • Shah K, Bureau E, Kim DE, Yang K, Tang Y, Weissleder R et al. (2005). Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol 57: 34–41.

    Article  CAS  Google Scholar 

  • Shah K, Hingtgen S, Kasmieh R, Figueiredo JL, Garcia-Garcia E, Martinez-Serrano A et al. (2008). Bimodal viral vectors and in vivo imaging reveal the fate of human neural stem cells in experimental glioma model. J Neurosci 28: 4406–4413.

    Article  CAS  Google Scholar 

  • Shah K, Tang Y, Breakefield X, Weissleder R . (2003). Real-time imaging of TRAIL-induced apoptosis of glioma tumors in vivo. Oncogene 22: 6865–6872.

    Article  CAS  Google Scholar 

  • Shah K, Tung CH, Yang K, Weissleder R, Breakefield XO . (2004). Inducible release of TRAIL fusion proteins from a proapoptotic form for tumor therapy. Cancer Res 64: 3236–3242.

    Article  CAS  Google Scholar 

  • Tang Y, Shah K, Messerli SM, Snyder E, Breakefield X, Weissleder R . (2003). in vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther 14: 1247–1254.

    Article  CAS  Google Scholar 

  • Tuettenberg J, Friedel C, Vajkoczy P . (2006). Angiogenesis in malignant glioma—a target for antitumor therapy? Crit Rev Oncol Hematol 59: 181–193.

    Article  CAS  Google Scholar 

  • Verhaegent M, Christopoulos TK . (2002). Recombinant gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization. Anal Chem 74: 4378–4385.

    Article  Google Scholar 

  • Zagzag D, Amirnovin R, Greco MA, Yee H, Holash J, Wiegand SJ et al. (2000). Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest 80: 837–849.

    Article  CAS  Google Scholar 

  • Zhang X, Connolly C, Duquette M, Lawler J, Parangi S . (2007). Continuous administration of the three thrombospondin-1 type 1 repeats recombinant protein improves the potency of therapy in an orthotopic human pancreatic cancer model. Cancer Lett 247: 143–149.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by American Cancer Society (KS), Goldhirsh foundation (KS), Alliance for Cancer Gene Therapy (KS), P50 CA86355 (KS, RW), R21CA131980 (KS). We thank Dr Rainer Koehler for his help with intravital microscopy and Dr Claudio Vinegoni for his help with processing images. We also thank Dr Jack Lawler (Beth Israel Deaconess Hospital, Boston) for providing us with TSP-1 cDNA construct and Dr Paul van Bergen en Henegouwen (Utrecht University, The Netherlands) for his constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Shah.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

van Eekelen, M., Sasportas, L., Kasmieh, R. et al. Human stem cells expressing novel TSP-1 variant have anti-angiogenic effect on brain tumors. Oncogene 29, 3185–3195 (2010). https://doi.org/10.1038/onc.2010.75

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.75

Keywords

This article is cited by

Search

Quick links