Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Oncogenomics
  • Published:

Meta-analysis of adrenocortical tumour genomics data: novel pathogenic pathways revealed

Abstract

Sporadic adrenocortical tumours are common, but their pathogenesis is poorly elucidated. In this study, we present a meta-analysis and review of gene expression microarray and comparative genome hybridization (CGH) studies performed to date on these tumours, including our own data. Data of whole genome microarray studies from altogether 164 tumours (97 benign, 67 malignant) and 18 normal tissues were reclassified and reanalysed. Significant gene sets and cytogenetic changes from publications without available genomic data were also examined including 269 benign, 215 malignant tumour and 30 normal tissues. In our experimental study, 11 tumour and four normal samples were analysed by parallel mRNA and CGH profiling. Data were examined by an integrative bioinformatics approach (GeneSpring, Gene Set Enrichment Analysis and Ingenuity Pathway Analysis softwares) searching for common gene expression changes and paralleling chromosome aberrations. Both meta-analysis of available mRNA and CGH profiling data and our experimental study revealed three major pathogenetic pathways: (1) cell cycle, (2) retinoic acid signalling (including lipopolysaccharide/Toll like receptor 4 pathway), (3) complement system and antigen presentation. These pathways include novel, previously undescribed pathomechanisms of adrenocortical tumours, and associated gene products may serve as diagnostic markers of malignancy and therapeutic targets.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Bertherat J, Groussin L, Sandrini F, Matyakhina L, Bei T, Stergiopoulos S et al. (2003). Molecular and functional analysis of PRKAR1A and its locus (17q22–24) in sporadic adrenocortical tumors: 17q losses, somatic mutations, and protein kinase A expression and activity. Cancer Res 63: 5308–5319.

    CAS  PubMed  Google Scholar 

  • Betz MJ, Shapiro I, Fassnacht M, Hahner S, Reincke M, Beuschlein F . (2005). Peroxisome proliferator-activated receptor-gamma agonists suppress adrenocortical tumor cell proliferation and induce differentiation. J Clin Endocrinol Metab 90: 3886–3896.

    Article  CAS  Google Scholar 

  • Bourcigaux N, Gaston V, Logié A, Bertagna X, Le Bouc Y, Gicquel C . (2000). High expression of cyclin E and G1 CDK and loss of function of p57KIP2 are involved in proliferation of malignant sporadic adrenocortical tumors. J Clin Endocrinol Metab 85: 322–330.

    CAS  PubMed  Google Scholar 

  • Cummins CL, Volle DH, Zhang Y, McDonald JG, Sion B, Lefrançois-Martinez AM et al. (2006). Liver X receptors regulate adrenal cholesterol balance. J Clin Invest 116: 1902–1912.

    Article  CAS  Google Scholar 

  • de Fraipont F, El Atifi M, Cherradi N, Le Moigne G, Defaye G, Houlgatte R et al. (2005). Gene expression profiling of human adrenocortical tumors using complementary deoxyribonucleic acid microarrays identifies several candidate genes as markers of malignancy. J Clin Endocrinol Metab 90: 1819–1829.

    Article  CAS  Google Scholar 

  • de Reyniès A, Assié G, Rickman DS, Tissier F, Groussin L, René-Corail F et al. (2009). Gene expression profiling reveals a new classification of adrenocortical tumors and identifies molecular predictors of malignancy and survival. J Clin Oncol 27: 1108–1115.

    Article  Google Scholar 

  • Dohna M, Reincke M, Mincheva A, Allolio B, Solinas-Toldo S, Lichter P . (2000). Adrenocortical carcinoma is characterized by a high frequency of chromosomal gains and high-level amplifications. Genes Chromosomes Cancer 28: 145–152.

    Article  CAS  Google Scholar 

  • el Akawi Z, Napoli JL . (1994). Rat liver cytosolic retinal dehydrogenase: comparison of 13-cis-, 9-cis-, and all-trans-retinal as substrates and effects of cellular retinoid-binding proteins and retinoic acid on activity. Biochemistry 33: 1938–1943.

    Article  CAS  Google Scholar 

  • Faggad A, Darb-Esfahani S, Wirtz R, Sinn B, Sehouli J, Könsgen D et al. (2009). Topoisomerase IIalpha mRNA and protein expression in ovarian carcinoma: correlation with clinicopathological factors and prognosis. Mod Pathol 22: 579–588.

    Article  CAS  Google Scholar 

  • Fernandez-Ranvier GG, Weng J, Yeh RF, Shibru D, Khafnashar E, Chung KW et al. (2008a). Candidate diagnostic markers and tumor suppressor genes for adrenocortical carcinoma by expression profile of genes on chromosome 11q13. World J Surg 32: 873–881.

    Article  Google Scholar 

  • Fernandez-Ranvier GG, Weng J, Yeh RF, Khanafshar E, Suh I, Barker C et al. (2008b). Identification of biomarkers of adrenocortical carcinoma using genomewide gene expression profiling. Arch Surg 143: 841–846.

    Article  Google Scholar 

  • Ferruzzi P, Ceni E, Tarocchi M, Grappone C, Milani S, Galli A et al. (2005). Thiazolidinediones inhibit growth and invasiveness of the human adrenocortical cancer cell line H295R. J Clin Endocrinol Metab 90: 1332–1339.

    Article  CAS  Google Scholar 

  • Figueiredo BC, Cavalli LR, Pianovski MA, Lalli E, Sandrini R, Ribeiro RC et al. (2005). Amplification of the steroidogenic factor 1 gene in childhood adrenocortical tumors. J Clin Endocrinol Metab 90: 615–619.

    Article  CAS  Google Scholar 

  • Figueiredo BC, Stratakis CA, Sandrini R, DeLacerda L, Pianovsky MA, Giatzakis C et al. (1999). Comparative genomic hybridization analysis of adrenocortical tumors of childhood. J Clin Endocrinol Metab 84: 1116–1121.

    CAS  PubMed  Google Scholar 

  • Ghose R, Zimmerman TL, Thevananther S, Karpen SJ . (2004). Endotoxin leads to rapid subcellular re-localization of hepatic RXRalpha: A novel mechanism for reduced hepatic gene expression in inflammation. Nucl Recept 2: 4.

    Article  Google Scholar 

  • Giordano TJ, Kuick R, Else T, Gauger PG, Vinco M, Bauersfeld J et al. (2009). Molecular classification and prognostication of adrenocortical tumors by transcriptome profiling. Clin Cancer Res 15: 668–676.

    Article  CAS  Google Scholar 

  • Giordano TJ, Thomas DG, Kuick R, Lizyness M, Misek DE, Smith AL et al. (2003). Distinct transcriptional profiles of adrenocortical tumors uncovered by DNA microarray analysis. Am J Pathol 162: 521–531.

    Article  CAS  Google Scholar 

  • Haselbeck RJ, Ang HL, Deltour L, Duester G . (1997). Retinoic acid and alcohol/retinol dehydrogenase in the mouse adrenal gland: a potential endocrine source of retinoic acid during development. Endocrinology 138: 3035–3041.

    Article  CAS  Google Scholar 

  • Hong F, Breitling R . (2008). A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments. Bioinformatics 24: 374–382.

    Article  CAS  Google Scholar 

  • Kanczkowski W, Zacharowski K, Wirth MP, Ehrhart-Bornstein M, Bornstein SR . (2009). Differential expression and action of Toll-like receptors in human adrenocortical cells. Mol Cell Endocrinol 300: 57–65.

    Article  CAS  Google Scholar 

  • Kjellman M, Kallioniemi OP, Karhu R, Höög A, Farnebo LO, Auer G et al. (1996). Genetic aberrations in adrenocortical tumors detected using comparative genomic hybridization correlate with tumor size and malignancy. Cancer Res 56: 4219–4223.

    CAS  PubMed  Google Scholar 

  • Laurell C, Velázquez-Fernández D, Lindsten K, Juhlin C, Enberg U, Geli J et al. (2009). Transcriptional profiling enables molecular classification of adrenocortical tumours. Eur J Endocrinol 161: 141–152.

    Article  CAS  Google Scholar 

  • Libè R, Fratticci A, Bertherat J . (2007). Adrenocortical cancer: pathophysiology and clinical management. Endocr Relat Cancer 14: 13–28.

    Article  Google Scholar 

  • Marx C, Wolkersdörfer GW, Brown JW, Scherbaum WA, Bornstein SR . (1996). MHC class II expression—a new tool to assess dignity in adrenocortical tumours. J Clin Endocrinol Metab 81: 4488–4491.

    CAS  PubMed  Google Scholar 

  • Ondrey F . (2009). Peroxisome proliferator-activated receptor gamma pathway targeting in carcinogenesis: implications for chemoprevention. Clin Cancer Res 15: 2–8.

    Article  CAS  Google Scholar 

  • Pålsson-McDermott EM, O′Neill LA . (2004). Signal transduction by the lipopolysaccharide receptor, Toll-like receptor-4. Immunology 113: 153–162.

    Article  Google Scholar 

  • Patalano A, Brancato V, Mantero F . (2009). Adrenocortical cancer treatment. Horm Res 71: 99–104.

    CAS  PubMed  Google Scholar 

  • Russell AJ, Sibbald J, Haak H, Keith WN, McNicol AM . (1999). Increasing genome instability in adrenocortical carcinoma progression with involvement of chromosomes 3, 9 and X at the adenoma stage. Br J Cancer 81: 684–689.

    Article  CAS  Google Scholar 

  • Scripture CD, Sparreboom A, Figg WD . (2005). Modulation of cytochrome P450 activity: implications for cancer therapy. Lancet Oncol 6: 780–789.

    Article  CAS  Google Scholar 

  • Shimizu M, Takai K, Moriwaki H . 2009. Strategy and mechanism for the prevention of hepatocellular carcinoma: phosphorylated retinoid X receptor alpha is a critical target for hepatocellular carcinoma chemoprevention. Cancer Sci 100: 369–374.

    Article  CAS  Google Scholar 

  • Sidhu S, Marsh DJ, Theodosopoulos G, Philips J, Bambach CP, Campbell P et al. (2002). Comparative genomic hybridization analysis of adrenocortical tumors. J Clin Endocrinol Metab 87: 3467–3474.

    Article  CAS  Google Scholar 

  • Skawran B, Steinemann D, Weigmann A, Flemming P, Becker T, Flik J et al. (2008). Gene expression profiling in hepatocellular carcinoma: upregulation of genes in amplified chromosome regions. Mod Pathol 21: 505–516.

    Article  CAS  Google Scholar 

  • Slater EP, Diehl SM, Langer P, Samans B, Ramaswamy A, Zielke A et al. (2006). Analysis by cDNA microarrays of gene expression patterns of human adrenocortical tumors. Eur J Endocrinol 154: 587–598.

    Article  CAS  Google Scholar 

  • Soon PS, McDonald KL, Robinson BG, Sidhu SB . (2008). Molecular markers and the pathogenesis of adrenocortical cancer. Oncologist 13: 548–561.

    Article  CAS  Google Scholar 

  • Soon PS, Gill AJ, Benn DE, Clarkson A, Robinson BG, McDonald KL et al. (2009). Microarray gene expression and immunohistochemistry analyses of adrenocortical tumors identify IGF-2 and Ki-67 as useful in differentiating carcinomas from adenomas. Endocr Relat Cancer 16: 573–583.

    Article  CAS  Google Scholar 

  • Stephan EA, Chung TH, Grant CS, Kim S, Von Hoff DD, Trent JM et al. (2008). Adrenocortical carcinoma survival rates correlated to genomic copy number variants. Mol Cancer Ther 7: 425–431.

    Article  CAS  Google Scholar 

  • Subramaniam S, Stansberg C, Cunningham C . (2004). The interleukin 1 receptor family. Dev Comp Immunol 28: 415–428.

    Article  CAS  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA et al. (2005). Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102: 15545–15550.

    Article  CAS  Google Scholar 

  • Thorngate FE, Strockbine PA, Erickson SK, Williams DL . (2002). Altered adrenal gland cholesterol metabolism in the apoE-deficient mouse. J Lipid Res 43: 1920–1926.

    Article  CAS  Google Scholar 

  • Tömböl Z, Szabó P, Molnár V, Wiener Z, Tölgyesi G, Horànyi J et al. (2009). Integrative molecular-bioinformatics study of human adrenocortical tumors: microRNA, tissue specific target prediction and pathway analysis. Endocr Relat Cancer 16: 895–906.

    Article  Google Scholar 

  • Turnbull AV, Rivier CL . (1999). Regulation of the hypothalamic-pituitary-adrenal axis by cytokines: actions and mechanisms of action. Physiol Rev 79: 1–71.

    Article  CAS  Google Scholar 

  • Vakharia K, Hinson JP . (2005). Lipopolysaccharide directly stimulates cortisol secretion by human adrenal cells by a cyclooxygenase-dependent mechanism. Endocrinology 146: 1398–1402.

    Article  CAS  Google Scholar 

  • Velázquez-Fernández D, Laurell C, Geli J, Höög A, Odeberg J, Kjellman M et al. (2005). Expression profiling of adrenocortical neoplasms suggests a molecular signature of malignancy. Surgery 138: 1087–1094.

    Article  Google Scholar 

  • West AN, Neale GA, Pounds S, Figueredo BC, Rodriguez Galindo C, Pianovski MA et al. (2007). Gene expression profiling of childhood adrenocortical tumors. Cancer Res 67: 600–608.

    Article  CAS  Google Scholar 

  • Wolkersdörfer GW, Marx C, Brown J, Schröder S, Füssel M, Rieber EP et al. (2005). Prevalence of HLA-DRB1 genotype and altered Fas/Fas ligand expression in adrenocortical carcinoma. J Clin Endocrinol Metab 90: 1768–1774.

    Article  Google Scholar 

  • Ye P, Mariniello B, Mantero F, Shibata H, Rainey WE . (2007). G-protein-coupled receptors in aldosterone-producing adenomas: a potential cause of hyperaldosteronism. J Endocrinol 195: 39–48.

    Article  CAS  Google Scholar 

  • Zacharowski K, Zacharowski PA, Koch A, Baban A, Tran N, Berkels R et al. (2006). Toll-like receptor 4 plays a crucial role in the immune-adrenal response to systemic inflammatory response syndrome. Proc Natl Acad Sci USA 103: 6392–6397.

    Article  CAS  Google Scholar 

  • Zhao J, Roth J, Bode-Lesniewska B, Pfaltz M, Heitz PU, Komminoth P . (2002). Combined comparative genomic hybridization and genomic microarray for detection of gene amplifications in pulmonary artery intimal sarcomas and adrenocortical tumors. Genes Chromosomes Cancer 34: 48–57.

    Article  CAS  Google Scholar 

  • Zhao J, Speel EJ, Muletta-Feurer S, Rütimann K, Saremaslani P, Roth J et al. (1999). Analysis of genomic alterations in sporadic adrenocortical lesions. Gain of chromosome 17 is an early event in adrenocortical tumorigenesis. Am J Pathol 155: 1039–1045.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Hungarian Scientific Research Fund (OTKA, PD72306) and the Hungarian Ministry of Health (ETT 040/09)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Igaz.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szabó, P., Tamási, V., Molnár, V. et al. Meta-analysis of adrenocortical tumour genomics data: novel pathogenic pathways revealed. Oncogene 29, 3163–3172 (2010). https://doi.org/10.1038/onc.2010.80

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.80

Keywords

This article is cited by

Search

Quick links