Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Shc is required for ErbB2-induced inhibition of apoptosis but is dispensable for cell proliferation and disruption of cell polarity

Abstract

Amplification and overexpression of ErbB2 strongly correlates with aggressive breast cancers. A deeper understanding of pathways downstream of ErbB2 signaling that are required for the transformation of human mammary epithelial cells will identify novel strategies for therapeutic intervention in breast cancer. Using an inducible activation of ErbB2 autophosphorylation qsite mutants and the MCF-10A three-dimensional (3D) culture system, we investigated pathways used by ErbB2 to transform the epithelia. We report that ErbB2 induces cell proliferation and loss of 3D organization by redundant mechanisms, whereas it disrupts apical basal polarity and inhibits apoptosis using Tyr 1201 and Tyr 1226/7, respectively. Signals downstream of Tyr 1226/7 were also sufficient to confer paclitaxel resistance. The Tyr 1226/7 binds Shc, and the knockdown of Shc blocks the ability of ErbB2 to inhibit apoptosis and mediate paclitaxel resistance. Tyr 1226/7 is known to activate the Ras/Erk pathway; however, paclitaxel resistance did not correlate with the activation of Erk or Akt, suggesting the presence of a novel mechanism. Thus, our results show that targeting pathways used by ErbB2 to inhibit cell death is a better option than targeting cell proliferation pathways. Furthermore, we identify a novel function for Shc as a regulator of apoptosis and drug resistance in human mammary epithelial cells transformed by ErbB2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Akiyama T, Matsuda S, Namba Y, Saito T, Toyoshima K, Yamamoto T . (1991). The transforming potential of the c-erbB-2 protein is regulated by its autophosphorylation at the carboxyl-terminal domain. Mol Cell Biol 11: 833–842.

    Article  CAS  Google Scholar 

  • Aranda V, Haire T, Nolan ME, Calarco JP, Rosenberg AZ, Fawcett JP et al. (2006). Par6-aPKC uncouples ErbB2 induced disruption of polarized epithelial organization from proliferation control. Nat Cell Biol 8: 1235–1245.

    Article  CAS  Google Scholar 

  • Buday L, Wunderlich L, Tamas P . (2002). The Nck family of adapter proteins: regulators of actin cytoskeleton. Cell Signal 14: 723–731.

    Article  CAS  Google Scholar 

  • Coopman PJ, Do MT, Barth M, Bowden ET, Hayes AJ, Basyuk E et al. (2000). The Syk tyrosine kinase suppresses malignant growth of human breast cancer cells. Nature 406: 742–747.

    Article  CAS  Google Scholar 

  • Dankort D, Jeyabalan N, Jones N, Dumont DJ, Muller WJ . (2001a). Multiple ErbB-2/Neu phosphorylation sites mediate transformation through distinct effector proteins. J Biol Chem 276: 38921–38928.

    Article  CAS  Google Scholar 

  • Dankort D, Maslikowski B, Warner N, Kanno N, Kim H, Wang Z et al. (2001b). Grb2 and Shc adapter proteins play distinct roles in Neu (ErbB-2)-induced mammary tumorigenesis: implications for human breast cancer. Mol Cell Biol 21: 1540–1551.

    Article  CAS  Google Scholar 

  • Dankort DL, Muller WJ . (2000). Signal transduction in mammary tumorigenesis: a transgenic perspective. Oncogene 19: 1038–1044.

    Article  CAS  Google Scholar 

  • Dankort DL, Wang Z, Blackmore V, Moran MF, Muller WJ . (1997). Distinct tyrosine autophosphorylation sites negatively and positively modulate neu-mediated transformation. Mol Cell Biol 17: 5410–5425.

    Article  CAS  Google Scholar 

  • Debnath J, Mills KR, Collins NL, Reginato MJ, Muthuswamy SK, Brugge JS . (2002). The role of apoptosis in creating and maintaining luminal space within normal and oncogene-expressing mammary acini. Cell 111: 29–40.

    Article  CAS  Google Scholar 

  • Feller SM . (2001). Crk family adaptors-signalling complex formation and biological roles. Oncogene 20: 6348–6371.

    Article  CAS  Google Scholar 

  • Gu J, Tamura M, Pankov R, Danen EH, Takino T, Matsumoto K et al. (1999). Shc and FAK differentially regulate cell motility and directionality modulated by PTEN. J Cell Biol 146: 389–403.

    Article  CAS  Google Scholar 

  • Habib T, Hejna JA, Moses RE, Decker SJ . (1998). Growth factors and insulin stimulate tyrosine phosphorylation of the 51C/SHIP2 protein. J Biol Chem 273: 18605–18609.

    Article  CAS  Google Scholar 

  • Harrison SC . (1996). Peptide-surface association: the case of PDZ and PTB domains. Cell 86: 341–343.

    Article  CAS  Google Scholar 

  • Henson ES, Hu X, Gibson SB . (2006). Herceptin sensitizes ErbB2-overexpressing cells to apoptosis by reducing antiapoptotic Mcl-1 expression. Clin Cancer Res 12: 845–853.

    Article  CAS  Google Scholar 

  • Janes PW, Daly RJ, deFazio A, Sutherland RL . (1994). Activation of the Ras signalling pathway in human breast cancer cells overexpressing erbB-2. Oncogene 9: 3601–3608.

    CAS  Google Scholar 

  • Jones RB, Gordus A, Krall JA, MacBeath G . (2006). A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439: 168–174.

    Article  CAS  Google Scholar 

  • Kim H, Chan R, Dankort DL, Zuo D, Najoukas M, Park M et al. (2005). The c-Src tyrosine kinase associates with the catalytic domain of ErbB-2: implications for ErbB-2 mediated signaling and transformation. Oncogene 24: 7599–7607.

    Article  CAS  Google Scholar 

  • Knuefermann C, Lu Y, Liu B, Jin W, Liang K, Wu L et al. (2003). HER2/PI-3K/Akt activation leads to a multidrug resistance in human breast adenocarcinoma cells. Oncogene 22: 3205–3212.

    Article  CAS  Google Scholar 

  • Leung WH, Bolland S . (2007). The inositol 5′-phosphatase SHIP-2 negatively regulates IgE-induced mast cell degranulation and cytokine production. J Immunol 179: 95–102.

    Article  CAS  Google Scholar 

  • Marone R, Hess D, Dankort D, Muller WJ, Hynes NE, Badache A . (2004). Memo mediates ErbB2-driven cell motility. Nat Cell Biol 6: 515–522.

    Article  CAS  Google Scholar 

  • Muthuswamy SK, Gilman M, Brugge JS . (1999). Controlled dimerization of ErbB receptors provides evidence for differential signaling by homo- and heterodimers. Mol Cell Biol 19: 6845–6857.

    Article  CAS  Google Scholar 

  • Muthuswamy SK, Li D, Lelievre S, Bissell MJ, Brugge JS . (2001). ErbB2, but not ErbB1, reinitiates proliferation and induces luminal repopulation in epithelial acini. Nat Cell Biol 3: 785–792.

    Article  CAS  Google Scholar 

  • Nahta R, Esteva FJ . (2007). Trastuzumab: triumphs and tribulations. Oncogene 26: 3637–3643.

    Article  CAS  Google Scholar 

  • Nelson JM, Fry DW . (2001). Akt, MAPK (Erk1/2), and p38 act in concert to promote apoptosis in response to ErbB receptor family inhibition. J Biol Chem 276: 14842–14847.

    Article  CAS  Google Scholar 

  • Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB . (2003). Mechanisms of Taxol resistance related to microtubules. Oncogene 22: 7280–7295.

    Article  CAS  Google Scholar 

  • Pupa SM, Tagliabue E, Menard S, Anichini A . (2005). HER-2: a biomarker at the crossroads of breast cancer immunotherapy and molecular medicine. J Cell Physiol 205: 10–18.

    Article  CAS  Google Scholar 

  • Romond EH, Perez EA, Bryant J, Suman VJ, Geyer Jr CE, Davidson NE et al. (2005). Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353: 1673–1684.

    Article  CAS  Google Scholar 

  • Saucier C, Khoury H, Lai KM, Peschard P, Dankort D, Naujokas MA et al. (2004). The Shc adaptor protein is critical for VEGF induction by Met/HGF and ErbB2 receptors and for early onset of tumor angiogenesis. Proc Natl Acad Sci USA 101: 2345–2350.

    Article  CAS  Google Scholar 

  • Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL . (1987). Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235: 177–182.

    Article  CAS  Google Scholar 

  • Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE et al. (1989). Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244: 707–712.

    Article  CAS  Google Scholar 

  • Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A et al. (2001). Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344: 783–792.

    Article  CAS  Google Scholar 

  • Thomas D, Patterson SD, Bradshaw RA . (1995). Src homologous and collagen (Shc) protein binds to F-actin and translocates to the cytoskeleton upon nerve growth factor stimulation in PC12 cells. J Biol Chem 270: 28924–28931.

    Article  CAS  Google Scholar 

  • Ursini-Siegel J, Hardy WR, Zuo D, Lam SH, Sanguin-Gendreau V, Cardiff RD et al. (2008). ShcA signalling is essential for tumour progression in mouse models of human breast cancer. EMBO J 27: 910–920.

    Article  CAS  Google Scholar 

  • Verrills NM, Po’uha ST, Liu ML, Liaw TY, Larsen MR, Ivery MT et al. (2006). Alterations in gamma-actin and tubulin-targeted drug resistance in childhood leukemia. J Natl Cancer Inst 98: 1363–1374.

    Article  CAS  Google Scholar 

  • Wada T, Penninger JM . (2004). Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23: 2838–2849.

    Article  CAS  Google Scholar 

  • Yarden Y, Sliwkowski MX . (2001). Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2: 127–137.

    Article  CAS  Google Scholar 

  • Yu D, Jing T, Liu B, Yao J, Tan M, McDonnell TJ et al. (1998). Overexpression of ErbB2 blocks Taxol-induced apoptosis by upregulation of p21Cip1, which inhibits p34Cdc2 kinase. Mol Cell 2: 581–591.

    Article  CAS  Google Scholar 

  • Zhan L, Xiang B, Muthuswamy SK . (2006). Controlled activation of ErbB1/ErbB2 heterodimers promote invasion of three-dimensional organized epithelia in an ErbB1-dependent manner: implications for progression of ErbB2-overexpressing tumors. Cancer Res 66: 5201–5208.

    Article  CAS  Google Scholar 

  • Zhou BP, Hu MC, Miller SA, Yu Z, Xia W, Lin SY et al. (2000). HER-2/neu blocks tumor necrosis factor-induced apoptosis via the Akt/NF-kappaB pathway. J Biol Chem 275: 8027–8031.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the members of the Muthuswamy Laboratory for critical discussions and comments on the paper. This work was supported by CA098830 and CA105388 Grants from NCI, DOD BC075024 from DOD Breast Cancer Research Program, Rita Allen Foundation, FACT foundation and Lee K Margaret Lau Chair in Breast Cancer Research to SKM and DAMD17-03-1-0196 from DOD Breast Cancer Research Program to AL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S K Muthuswamy.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lucs, A., Muller, W. & Muthuswamy, S. Shc is required for ErbB2-induced inhibition of apoptosis but is dispensable for cell proliferation and disruption of cell polarity. Oncogene 29, 174–187 (2010). https://doi.org/10.1038/onc.2009.312

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.312

Keywords

This article is cited by

Search

Quick links