Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Transcription factor regulatory networks in mammary epithelial development and tumorigenesis

Abstract

The mouse mammary gland is composed of three epithelial cell types, which include ductal, alveolar and myoepithelial cells. A hierarchy in which the mammary stem cell compartment gives rise to progressively restricted progenitors that ultimately form the luminal (ductal and alveolar) and myoepithelial lineages is now emerging. Although very little is known about the mechanisms controlling the differentiation of the myoepithelial cell lineage, a growing body of work reveals that the luminal cell fate is specified by a network of transcription factors. The precise roles of specific transcription factors in promoting differentiation of luminal progenitors into ductal or alveolar cells are now being elucidated. This review will discuss the importance of these recent observations and place them within the context of other transcription factor networks involved in mammary gland development and tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  • Asselin-Labat ML, Sutherland KD, Barker H, Thomas R, Shackleton M, Forrest NC et al. (2007). Gata-3 is an essential regulator of mammary-gland morphogenesis and luminal-cell differentiation. Nat Cell Biol 9: 201–209.

    Article  CAS  PubMed  Google Scholar 

  • Asselin-Labat ML, Vaillant F, Shackleton M, Bouras T, Lindeman GJ, Visvader JE . (2008). Delineating the epithelial hierarchy in the mouse mammary gland. Cold Spring Harb Symp Quant Biol 73: 469–478.

    Article  CAS  PubMed  Google Scholar 

  • Brisken C . (2002). Hormonal control of alveolar development and its implications for breast carcinogenesis. J Mammary Gland Biol Neoplasia 7: 39–48.

    Article  PubMed  Google Scholar 

  • Campbell LL, Polyak K . (2007). Breast tumor heterogeneity: cancer stem cells or clonal evolution? Cell Cycle 6: 2332–2338.

    Article  CAS  PubMed  Google Scholar 

  • Chapman RS, Lourenco PC, Tonner E, Flint DJ, Selbert S, Takeda K et al. (1999). Suppression of epithelial apoptosis and delayed mammary gland involution in mice with a conditional knockout of Stat3. Genes Dev 13: 2604–2616.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi YS, Chakrabarti R, Escamilla-Hernandez R, Sinha S . (2009). Elf5 conditional knockout mice reveal its role as a master regulator in mammary alveolar development: failure of Stat5 activation and functional differentiation in the absence of Elf5. Dev Biol 329: 227–241.

    Article  CAS  PubMed  Google Scholar 

  • Clevenger CV . (2003). Role of prolactin/prolactin receptor signaling in human breast cancer. Breast Dis 18: 75–86.

    Article  CAS  PubMed  Google Scholar 

  • Cotarla I, Ren S, Zhang Y, Gehan E, Singh B, Furth PA . (2004). Stat5a is tyrosine phosphorylated and nuclear localized in a high proportion of human breast cancers. Int J Cancer 108: 665–671.

    Article  CAS  PubMed  Google Scholar 

  • Dydensborg AB, Rose AA, Wilson BJ, Grote D, Paquet M, Giguere V et al. (2009). GATA3 inhibits breast cancer growth and pulmonary breast cancer metastasis. Oncogene 28: 2634–2642.

    Article  CAS  PubMed  Google Scholar 

  • Eirew P, Stingl J, Raouf A, Turashvili G, Aparicio S, Emerman JT et al. (2008). A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nat Med 14: 1384–1389.

    Article  CAS  PubMed  Google Scholar 

  • Fang SH, Chen Y, Weigel RJ . (2009). GATA-3 as a marker of hormone response in breast cancer. J Surg Res 157: 290–295.

    Article  CAS  PubMed  Google Scholar 

  • Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al. (2007). ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1: 555–567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grimm SL, Rosen JM . (2003). The role of C/EBPbeta in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 8: 191–204.

    Article  PubMed  Google Scholar 

  • Guo W, Pylayeva Y, Pepe A, Yoshioka T, Muller WJ, Inghirami G et al. (2006). Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis. Cell 126: 489–502.

    Article  CAS  PubMed  Google Scholar 

  • Guy CT, Cardiff RD, Muller WJ . (1992). Induction of mammary tumors by expression of polyomavirus middle T oncogene: a transgenic mouse model for metastatic disease. Mol Cell Biol 12: 954–961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hennessy BT, Gonzalez-Angulo AM, Stemke-Hale K, Gilcrease MZ, Krishnamurthy S, Lee JS et al. (2009). Characterization of a naturally occurring breast cancer subset enriched in epithelial-to-mesenchymal transition and stem cell characteristics. Cancer Res 69: 4116–4124.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herschkowitz JI, Simin K, Weigman VJ, Mikaelian I, Usary J, Hu Z et al. (2007). Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biol 8: R76.

    Article  PubMed  PubMed Central  Google Scholar 

  • Humphreys RC, Bierie B, Zhao L, Raz R, Levy D, Hennighausen L . (2002). Deletion of Stat3 blocks mammary gland involution and extends functional competence of the secretory epithelium in the absence of lactogenic stimuli. Endocrinology 143: 3641–3650.

    Article  CAS  PubMed  Google Scholar 

  • Jackson-Fisher AJ, Bellinger G, Shum E, Duong JK, Perkins AS, Gassmann M et al. (2006). Formation of Neu/ErbB2-induced mammary tumors is unaffected by loss of ErbB4. Oncogene 25: 5664–5672.

    Article  CAS  PubMed  Google Scholar 

  • Jones FE, Welte T, Fu XY, Stern DF . (1999). ErbB4 signaling in the mammary gland is required for lobuloalveolar development and Stat5 activation during lactation. J Cell Biol 147: 77–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouros-Mehr H, Bechis SK, Slorach EM, Littlepage LE, Egeblad M, Ewald AJ et al. (2008a). GATA-3 links tumor differentiation and dissemination in a luminal breast cancer model. Cancer Cell 13: 141–152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouros-Mehr H, Kim JW, Bechis SK, Werb Z . (2008b). GATA-3 and the regulation of the mammary luminal cell fate. Curr Opin Cell Biol 20: 164–170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kouros-Mehr H, Slorach EM, Sternlicht MD, Werb Z . (2006). GATA-3 maintains the differentiation of the luminal cell fate in the mammary gland. Cell 127: 1041–1055.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamarca HL, Visbal AP, Creighton CJ, Liu H, Zhang Y, Behbod F et al. (2010). C/EBPbeta Regulates stem cell activity and specifies luminal cell fate in the mammary gland. Stem Cells (e-pub ahead of print).

  • Lim E, Vaillant F, Wu D, Forrest NC, Pal B, Hart AH et al. (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nat Med 15: 907–913.

    Article  CAS  PubMed  Google Scholar 

  • Lin EY, Jones JG, Li P, Zhu L, Whitney KD, Muller WJ et al. (2003). Progression to malignancy in the polyoma middle T oncoprotein mouse breast cancer model provides a reliable model for human diseases. Am J Pathol 163: 2113–2126.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu X, Robinson GW, Wagner KU, Garrett L, Wynshaw-Boris A, Hennighausen L . (1997). Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev 11: 179–186.

    Article  CAS  PubMed  Google Scholar 

  • McDaniel SM, Rumer KK, Biroc SL, Metz RP, Singh M, Porter W et al. (2006). Remodeling of the mammary microenvironment after lactation promotes breast tumor cell metastasis. Am J Pathol 168: 608–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehra R, Varambally S, Ding L, Shen R, Sabel MS, Ghosh D et al. (2005). Identification of GATA3 as a breast cancer prognostic marker by global gene expression meta-analysis. Cancer Res 65: 11259–11264.

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi K, Shillingford JM, Smith GH, Grimm SL, Wagner KU, Oka T et al. (2001). Signal transducer and activator of transcription (Stat) 5 controls the proliferation and differentiation of mammary alveolar epithelium. J Cell Biol 155: 531–542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molyneux G, Regan J, Smalley MJ . (2007). Mammary stem cells and breast cancer. Cell Mol Life Sci 64: 3248–3260.

    Article  CAS  PubMed  Google Scholar 

  • Naylor MJ, Ormandy CJ . (2007). Gata-3 and mammary cell fate. Breast Cancer Res 9: 302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Oakes SR, Naylor MJ, Asselin-Labat ML, Blazek KD, Gardiner-Garden M, Hilton HN et al. (2008). The Ets transcription factor Elf5 specifies mammary alveolar cell fate. Genes Dev 22: 581–586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pensa S, Watson CJ, Poli V . (2009). Stat3 and the inflammation/acute phase response in involution and breast cancer. J Mammary Gland Biol Neoplasia 14: 121–129.

    Article  PubMed  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. (2000). Molecular portraits of human breast tumours. Nature 406: 747–752.

    Article  CAS  PubMed  Google Scholar 

  • Polyak K . (2007a). Breast cancer stem cells: a case of mistaken identity? Stem Cell Rev 3: 107–109.

    Article  PubMed  Google Scholar 

  • Polyak K . (2007b). Breast cancer: origins and evolution. J Clin Invest 117: 3155–3163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prat A, Perou CM . (2009). Mammary development meets cancer genomics. Nat Med 15: 842–844.

    Article  CAS  PubMed  Google Scholar 

  • Ranger JJ, Levy DE, Shahalizadeh S, Hallett M, Muller WJ . (2009). Identification of a Stat3-dependent transcription regulatory network involved in metastatic progression. Cancer Res 69: 6823–6830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren S, Cai HR, Li M, Furth PA . (2002). Loss of Stat5a delays mammary cancer progression in a mouse model. Oncogene 21: 4335–4339.

    Article  CAS  PubMed  Google Scholar 

  • Schedin P, O′Brien J, Rudolph M, Stein T, Borges V . (2007). Microenvironment of the involuting mammary gland mediates mammary cancer progression. J Mammary Gland Biol Neoplasia 12: 71–82.

    Article  PubMed  Google Scholar 

  • Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML et al. (2006). Generation of a functional mammary gland from a single stem cell. Nature 439: 84–88.

    Article  CAS  PubMed  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98: 10869–10874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100: 8418–8423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sotiriou C, Neo SY, McShane LM, Korn EL, Long PM, Jazaeri A et al. (2003). Breast cancer classification and prognosis based on gene expression profiles from a population-based study. Proc Natl Acad Sci USA 100: 10393–10398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sternlicht MD, Kouros-Mehr H, Lu P, Werb Z . (2006). Hormonal and local control of mammary branching morphogenesis. Differentiation 74: 365–381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, Choi D et al. (2006a). Purification and unique properties of mammary epithelial stem cells. Nature 439: 993–997.

    Article  CAS  PubMed  Google Scholar 

  • Stingl J, Raouf A, Eirew P, Eaves CJ . (2006b). Deciphering the mammary epithelial cell hierarchy. Cell Cycle 5: 1519–1522.

    Article  CAS  PubMed  Google Scholar 

  • Thangaraju M, Rudelius M, Bierie B, Raffeld M, Sharan S, Hennighausen L et al. (2005). C/EBPdelta is a crucial regulator of pro-apoptotic gene expression during mammary gland involution. Development 132: 4675–4685.

    Article  CAS  PubMed  Google Scholar 

  • Tiffen PG, Omidvar N, Marquez-Almuina N, Croston D, Watson CJ, Clarkson RW . (2008). A dual role for oncostatin M signaling in the differentiation and death of mammary epithelial cells in vivo. Mol Endocrinol 22: 2677–2688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tvorogov D, Sundvall M, Kurppa K, Hollmen M, Repo S, Johnson MS et al. (2009). Somatic mutations of ErbB4: selective loss-of-function phenotype affecting signal transduction pathways in cancer. J Biol Chem 284: 5582–5591.

    Article  CAS  PubMed  Google Scholar 

  • Visvader JE . (2009). Keeping abreast of the mammary epithelial hierarchy and breast tumorigenesis. Genes Dev 23: 2563–2577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vomachka AJ, Pratt SL, Lockefeer JA, Horseman ND . (2000). Prolactin gene-disruption arrests mammary gland development and retards T-antigen-induced tumor growth. Oncogene 19: 1077–1084.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Yuan Y, Liao L, Kuang SQ, Tien JC, O′Malley BW et al. (2009). Disruption of the SRC-1 gene in mice suppresses breast cancer metastasis without affecting primary tumor formation. Proc Natl Acad Sci USA 106: 151–156.

    Article  CAS  PubMed  Google Scholar 

  • Yamaji D, Na R, Feuermann Y, Pechhold S, Chen W, Robinson GW et al. (2009). Development of mammary luminal progenitor cells is controlled by the transcription factor STAT5A. Genes Dev 23: 2382–2387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Sif S, DeWille J . (2007). The mouse C/EBPdelta gene promoter is regulated by STAT3 and Sp1 transcriptional activators, chromatin remodeling and c-Myc repression. J Cell Biochem 102: 1256–1270.

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Wulfkuhle J, Zhang H, Gu P, Yang Y, Deng J et al. (2007). Activation of the PTEN/mTOR/STAT3 pathway in breast cancer stem-like cells is required for viability and maintenance. Proc Natl Acad Sci USA 104: 16158–16163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr Josie Ursini-Siegel and Rob Annan for their critical reading of the manuscript. Work carried out in the laboratory of Dr WJ Muller was supported by a grant from the National Cancer Institute of Canada/Terry Fox Foundation Program Project Grant (#017003). PMS is a research scientist of the Canadian Cancer Society and WJM holds a Canada Research Chair in Molecular Oncology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W J Muller.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siegel, P., Muller, W. Transcription factor regulatory networks in mammary epithelial development and tumorigenesis. Oncogene 29, 2753–2759 (2010). https://doi.org/10.1038/onc.2010.43

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.43

Keywords

This article is cited by

Search

Quick links