Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Bmi1 is a MYCN target gene that regulates tumorigenesis through repression of KIF1B β and TSLC1 in neuroblastoma

Abstract

Recent advances in neuroblastoma (NB) research addressed that epigenetic alterations such as hypermethylation of promoter sequences, with consequent silencing of tumor-suppressor genes, can have significant roles in the tumorigenesis of NB. However, the exact role of epigenetic alterations, except for DNA hypermethylation, remains to be elucidated in NB research. In this paper, we clarified the direct binding of MYCN to Bmi1 promoter and upregulation of Bmi1 transcription by MYCN. Mutation introduction into an MYCN binding site in the Bmi1 promoter suggests that MYCN has more important roles in the transcription of Bmi1 than E2F-related Bmi1 regulation. A correlation between MYCN and polycomb protein Bmi1 expression was observed in primary NB tumors. Expression of Bmi1 resulted in the acceleration of proliferation and colony formation in NB cells. Bmi1-related inhibition of NB cell differentiation was confirmed by neurite extension assay and analysis of differentiation marker molecules. Intriguingly, the above-mentioned Bmi1-related regulation of the NB cell phenotype seems not to be mediated only by p14ARF/p16INK4a in NB cells. Expression profiling analysis using a tumor-specific cDNA microarray addressed the Bmi1-dependent repression of KIF1Bβ and TSLC1, which have important roles in predicting the prognosis of NB. Chromatin immunoprecipitation assay showed that KIF1Bβ and TSLC1 are direct targets of Bmi1 in NB cells. These findings suggest that MYCN induces Bmi1 expression, resulting in the repression of tumor suppressors through Polycomb group gene-mediated epigenetic chromosome modification. NB cell proliferation and differentiation seem to be partially dependent on the MYCN/Bmi1/tumor-suppressor pathways.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Ando K, Ohira M, Ozaki T, Nakagawa A, Akazawa K, Suenaga Y et al. (2008). Expression of TSLC1, a candidate tumor suppressor gene mapped to chromosome 11q23, is downregulated in unfavorable neuroblastoma without promoter hypermethylation. Int J Cancer 123: 2087–2094.

    Article  CAS  PubMed  Google Scholar 

  • Atsuta T, Fujimura S, Moriya H, Vidal M, Akasaka T, Koseki H . (2001). Production of monoclonal antibodies against mammalian Ring1B proteins. Hybridoma 20: 43–46.

    Article  CAS  PubMed  Google Scholar 

  • Brodeur GM, Seeger RC, Schwab M, Varmus HE, Bishop JM . (1984). Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224: 1121–1124.

    Article  CAS  PubMed  Google Scholar 

  • Bruggeman SW, Hulsman D, Tanger E, Buckle T, Blom M, Zevenhoven J et al. (2007). Bmi1 controls tumor development in an Ink4a/Arf-independent manner in a mouse model for glioma. Cancer Cell 12: 328–341.

    Article  CAS  PubMed  Google Scholar 

  • Cao R, Tsukada Y, Zhang Y . (2005). Role of Bmi-1 and Ring1A in H2A ubiquitylation and Hox gene silencing. Mol Cell 20: 845–854.

    Article  CAS  PubMed  Google Scholar 

  • Caron H . (1995). Allelic loss of chromosome 1 and additional chromosome 17 material are both unfavourable prognostic markers in neuroblastoma. Med Pediatr Oncol 24: 215–221.

    Article  CAS  PubMed  Google Scholar 

  • Carén H, Ejeskär K, Fransson S, Hesson L, Latif F, Sjöberg RM et al. (2005). A cluster of genes located in 1p36 are down-regulated in neuroblastomas with poor prognosis, but not due to CpG island methylation. Mol Cancer 4: 10.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cui H, Ma J, Ding J, Li T, Alam G, Ding HF . (2006). Bmi-1 regulates the differentiation and clonogenic self-renewal of I-type neuroblastoma cells in a concentration-dependent manner. J Biol Chem 281: 34696–34704.

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Hu B, Li T, Ma J, Alam G, Gunning WT et al. (2007). Bmi-1 is essential for the tumorigenicity of neuroblastoma cells. Am J Pathol 170: 1370–1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Easton J, Wei T, Lahti JM, Kidd VJ . (1998). Disruption of the cyclin D/cyclin-dependent kinase/INK4/retinoblastoma protein regulatory pathway in human neuroblastoma. Cancer Res 58: 2624–2632.

    CAS  PubMed  Google Scholar 

  • Esteller M . (2007). Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8: 286–298.

    Article  CAS  PubMed  Google Scholar 

  • Fujimura Y, Isono K, Vidal M, Endoh M, Kajita H, Mizutani-Koseki Y et al. (2006). Distinct roles of Polycomb group gene products in transcriptionally repressed and active domains of Hoxb8. Development 133: 2371–2381.

    Article  CAS  PubMed  Google Scholar 

  • Guney I, Wu S, Sedivy JM . (2006). Reduced c-Myc signaling triggers telomere-independent senescence by regulating Bmi-1 and p16(INK4a). Proc Natl Acad Sci USA 103: 3645–3650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanahan D, Weinberg RA . (2000). The hallmarks of cancer. Cell 100: 57–70.

    Article  CAS  PubMed  Google Scholar 

  • Iwama A, Oguro H, Negishi M, Kato Y, Morita Y, Tsukui H et al. (2004). Enhanced self-renewal of hematopoietic stem cells mediated by the polycomb gene product Bmi-1. Immunity 21: 843–851.

    Article  CAS  PubMed  Google Scholar 

  • Jacobs JJ, Kieboom K, Marino S, DePinho RA, van Lohuizen M . (1999). The oncogene and Polycomb-group gene bmi-1 regulates cell proliferation and senescence through the ink4a locus. Nature 397: 164–168.

    Article  CAS  PubMed  Google Scholar 

  • Jones PA, Baylin SB . (2002). The fundamental role of epigenetic events in cancer. Nat Rev Genet 3: 415–428.

    Article  CAS  PubMed  Google Scholar 

  • Kamminga LM, Bystrykh LV, de Boer A, Houwer S, Douma J, Weersing E et al. (2005). The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 107: 2170–2179.

    Article  PubMed  Google Scholar 

  • Kamminga LM, de Haan G . (2006). Cellular memory and hematopoietic stem cell aging. Stem Cells 24: 1143–1149.

    Article  CAS  PubMed  Google Scholar 

  • Kramps C, Strieder V, Sapetschnig A, Suske G, Lutz W . (2004). E2F and Sp1/Sp3 synergize but are not sufficient to activate the MYCN gene in neuroblastomas. J Biol Chem 279: 5110–5117.

    Article  CAS  PubMed  Google Scholar 

  • Kurata K, Yanagisawa R, Ohira M, Kitagawa M, Nakagawara A, Kamijo T . (2008). Stress via p53 pathway causes apoptosis by mitochondrial Noxa upregulation in doxorubicin-treated neuroblastoma cells. Oncogene 27: 741–754.

    Article  CAS  PubMed  Google Scholar 

  • Lessard J, Sauvageau G . (2003). Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 423: 255–260.

    Article  CAS  PubMed  Google Scholar 

  • Leung C, Lingbeek M, Shakhova O, Liu J, Tanger E, Saremaslani P et al. (2004). Bmi1 is essential for cerebellar development and is overexpressed in human medulloblastomas. Nature 428: 337–341.

    Article  CAS  PubMed  Google Scholar 

  • Lutz W, Stohr M, Schurmann J, Wenzel A, Lohr A, Schwab M . (1996). Conditional expression of N-myc in human neuroblastoma cells increases expression of alpha-prothymosin and ornithine decarboxylase and accelerates progression into S-phase early after mitogenic stimulation of quiescent cells. Oncogene 13: 803–812.

    CAS  PubMed  Google Scholar 

  • Molofsky AV, Pardal R, Iwashita T, Park IK, Clarke MF, Morrison SJ . (2003). Bmi-1 dependence distinguishes neural stem cell self-renewal from progenitor proliferation. Nature 425: 962–967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J et al. (2006). Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443: 448–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munirajan AK, Ando K, Mukai A, Takahashi M, Suenaga Y, Ohira M et al. (2008). KIF1Bbeta functions as a haploinsufficient tumor suppressor gene mapped to chromosome 1p36.2 by inducing apoptotic cell death. J Biol Chem 283: 24426–24434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murakami Y . (2005). Involvement of a cell adhesion molecule, TSLC1/IGSF4, in human oncogenesis. Cancer Sci 96: 543–552.

    Article  CAS  PubMed  Google Scholar 

  • Nowak K, Kerl K, Fehr D, Kramps C, Gessner C, Killmer K et al. (2006). BMI1 is a target gene of E2F-1 and is strongly expressed in primary neuroblastomas. Nucleic Acids Res 34: 1745–1754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohira M, Oba S, Nakamura Y, Isogai E, Kaneko S, Nakagawa A et al. (2005). Expression profiling using a tumor-specific cDNA microarray predicts the prognosis of intermediate risk neuroblastomas. Cancer Cell 7: 337–350.

    Article  CAS  PubMed  Google Scholar 

  • Orlando V, Strutt H, Paro R . (1997). Analysis of chromatin structure by in vivo formaldehyde cross-linking. Methods 11: 205–214.

    Article  CAS  PubMed  Google Scholar 

  • Pietersen AM, van Lohuizen M . (2008). Stem cell regulation by polycomb repressors: postponing commitment. Curr Opin Cell Biol 20: 201–207.

    Article  CAS  PubMed  Google Scholar 

  • Rajasekhar VK, Begemann M . (2007). Concise review: roles of polycomb group proteins in development and disease: a stem cell perspective. Stem Cells 25: 2498–2510.

    Article  CAS  PubMed  Google Scholar 

  • Schwartz YB, Pirrotta V . (2008). Polycomb complexes and epigenetic states. Curr Opin Cell Biol 20: 266–273.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ . (2004). Principles of tumor suppression. Cell 116: 235–246.

    Article  CAS  PubMed  Google Scholar 

  • Sparmann A, van Lohuizen M . (2006). Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer 6: 846–856.

    Article  CAS  PubMed  Google Scholar 

  • Strieder V, Lutz W . (2003). E2F proteins regulate MYCN expression in neuroblastomas. J Biol Chem 278: 2983–2989.

    Article  CAS  PubMed  Google Scholar 

  • Sugino Y, Misawa A, Inoue J, Kitagawa M, Hosoi H, Sugimoto T et al. (2007). Epigenetic silencing of prostaglandin E receptor 2 (PTGER2) is associated with progression of neuroblastomas. Oncogene 26: 7401–7413.

    Article  CAS  PubMed  Google Scholar 

  • Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA et al. (2000). Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6: 529–535.

    Article  CAS  PubMed  Google Scholar 

  • Valk-Lingbeek ME, Bruggeman SW, van Lohuizen M . (2004). Stem cells and cancer; the polycomb connection. Cell 118: 409–418.

    Article  CAS  PubMed  Google Scholar 

  • Viré E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C et al. (2006). The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439: 871–874.

    Article  PubMed  Google Scholar 

  • Westemann F, Schwab M . (2002). Genetic parameters of neuroblastomas. Cancer Lett 184: 127–147.

    Article  Google Scholar 

  • Yan P, Mühlethaler A, Bourloud KB, Beck MN, Gross N . (2003). Hypermethylation-mediated regulation of CD44 gene expression in human neuroblastoma. Gene Chromosomes Cancer 36: 129–138.

    Article  CAS  Google Scholar 

  • Yang Q, Zage P, Kagan D, Tian Y, Seshadri R, Salwen HR et al. (2004). Association of epigenetic inactivation of RASSF1A with poor outcome in human neuroblastoma. Clin Cancer Res 10: 8493–8500.

    Article  CAS  PubMed  Google Scholar 

  • Yang QW, Liu S, Tian Y, Salwen HR, Chlenski A, Weinstein J et al. (2003). Methylation-associated silencing of the thrombospondin-1 gene in human neuroblastoma. Cancer Res 63: 6299–6310.

    CAS  PubMed  Google Scholar 

  • Yang J, Chai L, Liu F, Fink LM, Lin P, Silberstein LE et al. (2007). Bmi-1 is a target gene for SALL4 in hematopoietic and leukemic cells. Proc Natl Acad Sci USA 104: 10494–10499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank K Sakurai for technical assistance, and Daniel Mrozek, Medical English Service, for editorial assistance. This study was supported in part by a grant-in-aid from the Sankyo Foundation of Life Science, a grant-in-aid from the Ministry of Health, Labor, and Welfare for Third Term Comprehensive Control Research for Cancer, a grant-in-aid for Cancer Research (20–13) from the Ministry of Health, Labor, and Welfare of Japan, and a grant-in-aid from the Ministry of Education, Culture, Sports, Science and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T Kamijo.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ochiai, H., Takenobu, H., Nakagawa, A. et al. Bmi1 is a MYCN target gene that regulates tumorigenesis through repression of KIF1B β and TSLC1 in neuroblastoma. Oncogene 29, 2681–2690 (2010). https://doi.org/10.1038/onc.2010.22

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2010.22

Keywords

This article is cited by

Search

Quick links