Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Short Communication
  • Published:

Formin-like 2 drives amoeboid invasive cell motility downstream of RhoC

Abstract

Invasive cell migration is a key step for cancer metastasis and involves Rho GTPase-controlled reorganization of the actin cytoskeleton. Altered Rho GTPase expression is found in various malignancies. Particularly, the closely related GTPases RhoA and RhoC are upregulated in many aggressive tumours, but specific effectors that distinguish between these two GTPases to explain mechanistic differences have not been identified. The formins are by far the largest family of Rho GTPase effectors and are characterized by the actin-nucleating formin homology 2 domain. Using siRNA-based screening against all 15 human formins, we systematically analysed their functions in 3D cell motility using three different cancer cell lines. These results reveal distinct requirements for specific formins in amoeboid versus mesenchymal invasive cell migration. Importantly, by knocking down all Rho proteins, we identified formin-like 2 (FMNL2) as a specific RhoC effector, showing selective interaction of FMNL2 with active RhoC, but not RhoA or RhoB. Functional analysis shows that RhoC regulates autoinhibition of FMNL2, whereas suppression of FMNL2 inhibits RhoC-, but not RhoA-dependent, rounded invasive cell migration. Thus, our data uncover a novel regulatory and functional interaction between RhoC and FMNL2 for modulating cell shape and invasiveness and provide mechanistic insight into RhoC-specific signalling events.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Brandt DT, Baarlink C, Kitzing TM, Kremmer E, Ivaska J, Nollau P et al. (2009). SCAI acts as a suppressor of cancer cell invasion through the transcriptional control of beta1-integrin. Nat Cell Biol 11: 557–568.

    Article  CAS  Google Scholar 

  • Chesarone M, Gould CJ, Moseley JB, Goode BL . (2009). Displacement of formins from growing barbed ends by bud14 is critical for actin cable architecture and function. Dev Cell 16: 292–302.

    Article  CAS  Google Scholar 

  • Clark EA, Golub TR, Lander ES, Hynes RO . (2000). Genomic analysis of metastasis reveals an essential role for RhoC. Nature 406: 532–535.

    Article  CAS  Google Scholar 

  • Copeland JW, Treisman R . (2002). The diaphanous-related formin mDia1 controls serum response factor activity through its effects on actin polymerization. Mol Biol Cell 13: 4088–4099.

    Article  CAS  Google Scholar 

  • Fackler OT, Grosse R . (2008). Cell motility through plasma membrane blebbing. J Cell Biol 181: 879–884.

    Article  CAS  Google Scholar 

  • Faix J, Grosse R . (2006). Staying in shape with formins. Dev Cell 10: 693–706.

    Article  CAS  Google Scholar 

  • Fleming Y, Ferguson GJ, Spender LC, Larsson J, Karlsson S, Ozanne B et al. (2009). TGFβ-mediated activation of RhoA signalling is required for efficient V12-H-Ras and V600E-BRaf transformation. Oncogene 28: 983–993.

    Article  CAS  Google Scholar 

  • Goode BL, Eck MJ . (2007). Mechanism and function of formins in the control of actin assembly. Annu Rev Biochem 76: 593–627.

    Article  CAS  Google Scholar 

  • Goulimari P, Kitzing TM, Knieling H, Brandt DT, Offermanns S, Grosse R . (2005). Galpha12/13 is essential for directed cell migration and localized Rho-Dia1 function. J Biol Chem 280: 42242–42251.

    Article  CAS  Google Scholar 

  • Goulimari P, Knieling H, Engel U, Grosse R . (2008). LARG and mDia1 link Galpha12/13 to cell polarity and microtubule dynamics. Mol Biol Cell 19: 30–40.

    Article  CAS  Google Scholar 

  • Grosse R, Copeland JW, Newsome TP, Way M, Treisman R . (2003). A role for VASP in RhoA-Diaphanous signalling to actin dynamics and SRF activity. EMBO J 22: 3050–3061.

    Article  CAS  Google Scholar 

  • Hakem A, Sanchez-Sweatman O, You-Ten A, Duncan G, Wakeham A, Khokha R et al. (2005). RhoC is dispensable for embryogenesis and tumor initiation but essential for metastasis. Genes Dev 19: 1974–1979.

    Article  CAS  Google Scholar 

  • Hill CS, Wynne J, Treisman R . (1995). The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81: 1159–1170.

    Article  CAS  Google Scholar 

  • Ji P, Jayapal SR, Lodish HF . (2008). Enucleation of cultured mouse fetal erythroblasts requires Rac GTPases and mDia2. Nat Cell Biol 10: 314–321.

    Article  CAS  Google Scholar 

  • Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P et al. (2008). Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321: 1801–1806.

    Article  CAS  Google Scholar 

  • Karlsson R, Pedersen ED, Wang Z, Brakebusch C . (2009). Rho GTPase function in tumorigenesis. Biochim Biophys Acta 1796: 91–98.

    CAS  PubMed  Google Scholar 

  • Kitzing TM, Sahadevan AS, Brandt DT, Knieling H, Hannemann S, Fackler OT et al. (2007). Positive feedback between Dia1, LARG, and RhoA regulates cell morphology and invasion. Genes Dev 21: 1478–1483.

    Article  CAS  Google Scholar 

  • Lizarraga F, Poincloux R, Romao M, Montagnac G, Le Dez G, Bonne I et al. (2009). Diaphanous-related formins are required for invadopodia formation and invasion of breast tumor cells. Cancer Res 69: 2792–2800.

    Article  CAS  Google Scholar 

  • Mellor H, Flynn P, Nobes CD, Hall A, Parker PJ . (1998). PRK1 is targeted to endosomes by the small GTPase, RhoB. J Biol Chem 273: 4811–4814.

    Article  CAS  Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al. (2008). An integrated genomic analysis of human glioblastoma multiforme. Science 321: 1807–1812.

    Article  CAS  Google Scholar 

  • Pille JY, Denoyelle C, Varet J, Bertrand JR, Soria J, Opolon P et al. (2005). Anti-RhoA and anti-RhoC siRNAs inhibit the proliferation and invasiveness of MDA-MB-231 breast cancer cells in vitro and in vivo. Mol Ther 11: 267–274.

    Article  CAS  Google Scholar 

  • Pinner S, Sahai E . (2008). PDK1 regulates cancer cell motility by antagonising inhibition of ROCK1 by RhoE. Nat Cell Biol 10: 127–137.

    Article  CAS  Google Scholar 

  • Rose R, Weyand M, Lammers M, Ishizaki T, Ahmadian MR, Wittinghofer A . (2005). Structural and mechanistic insights into the interaction between Rho and mammalian Dia. Nature 435: 513–518.

    Article  CAS  Google Scholar 

  • Sahai E . (2005). Mechanisms of cancer cell invasion. Curr Opin Genet Dev 15: 87–96.

    Article  CAS  Google Scholar 

  • Sahai E . (2007). Illuminating the metastatic process. Nat Rev Cancer 7: 737–749.

    Article  CAS  Google Scholar 

  • Sanz-Moreno V, Gadea G, Ahn J, Paterson H, Marra P, Pinner S et al. (2008). Rac activation and inactivation control plasticity of tumor cell movement. Cell 135: 510–523.

    Article  CAS  Google Scholar 

  • Simpson KJ, Dugan AS, Mercurio AM . (2004). Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res 64: 8694–8701.

    Article  CAS  Google Scholar 

  • Vaillant DC, Copeland SJ, Davis C, Thurston SF, Abdennur N, Copeland JW . (2008). Interaction of the N- and C-terminal autoregulatory domains of FRL2 does not inhibit FRL2 activity. J Biol Chem 283: 33750–33762.

    Article  CAS  Google Scholar 

  • Watanabe N, Kato T, Fujita A, Ishizaki T, Narumiya S . (1999). Cooperation between mDia1 and ROCK in Rho-induced actin reorganization. Nat Cell Biol 1: 8–14.

    Article  Google Scholar 

  • Wheeler AP, Ridley AP . (2004). Why three Rho proteins? RhoA, RhoB, RhoC and cell motility. Exp Cell Res 301: 43–49.

    Article  CAS  Google Scholar 

  • Wolf K, Mazo I, Leung H, Engelke K, von Andrian UH, Deryugina EI et al. (2003). Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160: 267–277.

    Article  CAS  Google Scholar 

  • Wolf K, Wu YI, Liu Y, Geiger J, Tam E, Overall C et al. (2007). Multi-step pericellular proteolysis controls the transition from individual to collective cancer cell invasion. Nat Cell Biol 9: 893–904.

    Article  CAS  Google Scholar 

  • Zhu XL, Liang L, Ding YQ . (2008). Overexpression of FMNL2 is closely related to metastasis of colorectal cancer. Int J Colorectal Dis 23: 1041–1047.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Erik Sahai for supplying siRNAs against human Rho proteins. We thank Barbara Di Ventura for comments on the paper, Philippe Chavrier for discussions and Anke Niemann for excellent technical assistance. This work was funded by the Deutsche Krebshilfe e.V. (108293) and a group leader fellowship from the C.H.S.-Foundation to RG. JWC is supported by the Heart and Stroke Foundation of Ontario (T6317) and OP by grants from the Krebsliga beider Basel.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Grosse.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Additional information

Supplementary Information accompanies the paper on the Oncogene website

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kitzing, T., Wang, Y., Pertz, O. et al. Formin-like 2 drives amoeboid invasive cell motility downstream of RhoC. Oncogene 29, 2441–2448 (2010). https://doi.org/10.1038/onc.2009.515

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2009.515

Keywords

This article is cited by

Search

Quick links