Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Sprouty4 negatively regulates protein kinase C activation by inhibiting phosphatidylinositol 4,5-biphosphate hydrolysis

Abstract

Sproutys have been shown to negatively regulate growth factor-induced extracellular signal-regulated kinase (ERK) activation, and suggested to be an anti-oncogene. However, molecular mechanism of the suppression has not yet been clarified completely. Sprouty4 inhibits vascular endothelial growth factor (VEGF)-A-induced ERK activation, but not VEGF-C-induced ERK activation. It has been shown that VEGF-A-mediated ERK activation is strongly dependent on protein kinase C (PKC), whereas that by VEGF-C is dependent on Ras. This suggests that Sprouty4 inhibits the PKC pathway more specifically than the Ras pathway. In this study, we confirmed that Sprouty4 suppressed various signals downstream of PKC, such as phosphorylation of MARCKS and protein kinase D (PKD), as well as PKC-dependent nuclear factor (NF)-κB activation. Furthermore, Sprouty4 suppressed upstream signals of PKC, such as Ca2+ mobilization, phosphatidylinositol 4,5-biphosphate (PIP2) breakdown and inositol 1,4,5-triphosphate (IP3) production in response to VEGF-A. Those effects were dependent on the C-terminal cysteine-rich region, but not on the N-terminal region of Sprouty4, which is critical for the suppression of fibroblast growth factor (FGF)-mediated ERK activation. Sprouty4 overexpression or deletion of the Sprouty4 gene did not affect phospholipase C (PLC) γ-1 activation, which is an enzyme that catalyzes PIP2 hydrolysis. Moreover, Sprouty4 inhibited not only VEGF-A-mediated PIP2 hydrolysis but also inhibited the lysophosphatidic acid (LPA)-induced PIP2 breakdown that is catalyzed by PLCβ/ɛ activated by G-protein coupled receptor (GPCR). Taken together, Sprouty4 has broader suppression activity for various stimuli than previously thought; it may function as an inhibitor for various types of PLC-dependent signaling as well as for ERK activation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

GPCR:

G-protein-coupled receptor

IP3:

inositol 1,4,5-triphosphate

LPA:

lysophosphatidic acid

PIP2:

phosphatidyl inositol 4,5-biphosphate

PKC:

protein kinase C

PLC:

phospholipase C

VEGF:

vascular endothelial growth factor

References

  • Abe M, Naski MC . (2004). Regulation of sprouty expression by PLCγ and calcium-dependent signals. Biochem Biophys Res Commun 323: 1040–1047.

    Article  CAS  Google Scholar 

  • Angrist M, Bolk S, Halushka M, Lapchak PA, Chakravarti A . (1996). Germline mutations in glial cell line-derived neurotrophic factor (GDNF) and RET in a Hirschsprung disease patient. Nat Genet 14: 341–344.

    Article  CAS  Google Scholar 

  • Armesilla AL, Lorenzo E, Gomez del Arco P, Martinez-Martinez S, Alfranca A, Redondo JM . (1999). Vascular endothelial growth factor activates nuclear factor of activated T cells in human endothelial cells: a role for tissue factor gene expression. Mol Cell Biol 19: 2032–2043.

    Article  CAS  Google Scholar 

  • Basson MA, Akbulut S, Watson-Johnson J, Simon R, Carroll TJ, Shakya R et al. (2005). Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8: 229–239.

    Article  CAS  Google Scholar 

  • Basson MA, Watson-Johnson J, Shakya R, Akbulut S, Hyink D, Costantini FD et al. (2006). Branching morphogenesis of the ureteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 299: 466–477.

    Article  CAS  Google Scholar 

  • Brems H, Chmara M, Sahbatou M, Denayer E, Taniguchi K, Kato R et al. (2007). Germline loss-of-function mutations in SPRED1 cause a neurofibromatosis 1-like phenotype. Nat Genet 39: 1120–1126.

    Article  CAS  Google Scholar 

  • Byers DM, Palmer FB, Spence MW, Cook HW . (1993). Dissociation of phosphorylation and translocation of a myristoylated protein kinase C substrate (MARCKS protein) in C6 glioma and N1E-115 neuroblastoma cells. J Neurochem 60: 1414–1421.

    Article  CAS  Google Scholar 

  • Casci T, Vinos J, Freeman M . (1999). Sprouty, an intracellular inhibitor of Ras signaling. Cell 96: 655–665.

    Article  CAS  Google Scholar 

  • Fong CW, Chua MS, McKie AB, Ling SH, Mason V, Li R et al. (2006). Sprouty 2, an inhibitor of mitogen-activated protein kinase signaling, is down-regulated in hepatocellular carcinoma. Cancer Res 66: 2048–2058.

    Article  CAS  Google Scholar 

  • Fujita T, Nolan GP, Liou HC, Scott ML, Baltimore D . (1993). The candidate proto-oncogene bcl-3 encodes a transcriptional coactivator that activates through NF-κB p50 homodimers. Genes Dev 7: 1354–1363.

    Article  CAS  Google Scholar 

  • Fukunaga K, Ishii S, Asano K, Yokomizo T, Shiomi T, Shimizu T et al. (2001). Single nucleotide polymorphism of human platelet-activating factor receptor impairs G-protein activation. J Biol Chem 276: 43025–43030.

    Article  CAS  Google Scholar 

  • Gaudreau R, Le Gouill C, Metaoui S, Lemire S, Stankova J, Rola-Pleszczynski M . (1998). Signalling through the leukotriene B4 receptor involves both αi and α16, but not αq or α11 G-protein subunits. Biochem J 335 (Part 1): 15–18.

    Article  CAS  Google Scholar 

  • Gross I, Bassit B, Benezra M, Licht JD . (2001). Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation. J Biol Chem 276: 46460–46468.

    Article  CAS  Google Scholar 

  • Guy GR, Wong ES, Yusoff P, Chandramouli S, Lo TL, Lim J et al. (2003). Sprouty: how does the branch manager work? J Cell Sci 116: 3061–3068.

    Article  CAS  Google Scholar 

  • Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow MA . (1998). Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways. Cell 92: 253–263.

    Article  CAS  Google Scholar 

  • Hanafusa H, Torii S, Yasunaga T, Nishida E . (2002). Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway. Nat Cell Biol 4: 850–858.

    Article  CAS  Google Scholar 

  • Hempstead BL . (2004). Sculpting organ innervation. J Clin Invest 113: 811–813.

    Article  CAS  Google Scholar 

  • Impagnatiello MA, Weitzer S, Gannon G, Compagni A, Cotten M, Christofori G . (2001). Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells. J Cell Biol 152: 1087–1098.

    Article  CAS  Google Scholar 

  • Kato R, Nonami A, Taketomi T, Wakioka T, Kuroiwa A, Matsuda Y et al. (2003). Molecular cloning of mammalian Spred-3 which suppresses tyrosine kinase-mediated Erk activation. Biochem Biophys Res Commun 302: 767–772.

    Article  CAS  Google Scholar 

  • Kelley GG, Kaproth-Joslin KA, Reks SE, Smrcka AV, Wojcikiewicz RJ . (2006). G-protein-coupled receptor agonists activate endogenous phospholipase Cepsilon and phospholipase Cβ3 in a temporally distinct manner. J Biol Chem 281: 2639–2648.

    Article  CAS  Google Scholar 

  • Kramer S, Okabe M, Hacohen N, Krasnow MA, Hiromi Y . (1999). Sprouty: a common antagonist of FGF and EGF signaling pathways in Drosophila. Development 126: 2515–2525.

    CAS  PubMed  Google Scholar 

  • Kuriyama M, Taniguchi T, Shirai Y, Sasaki A, Yoshimura A, Saito N . (2004). Activation and translocation of PKCδ is necessary for VEGF-induced ERK activation through KDR in HEK293T cells. Biochem Biophys Res Commun 325: 843–851.

    Article  CAS  Google Scholar 

  • Lee SH, Schloss DJ, Jarvis L, Krasnow MA, Swain JL . (2001). Inhibition of angiogenesis by a mouse sprouty protein. J Biol Chem 276: 4128–4133.

    Article  CAS  Google Scholar 

  • Lemmon MA, Ferguson KM, O'Brien R, Sigler PB, Schlessinger J . (1995). Specific and high-affinity binding of inositol phosphates to an isolated pleckstrin homology domain. Proc Natl Acad Sci USA 92: 10472–10476.

    Article  CAS  Google Scholar 

  • Lim J, Yusoff P, Wong ES, Chandramouli S, Lao DH, Fong CW et al. (2002). The cysteine-rich sprouty translocation domain targets mitogen-activated protein kinase inhibitory proteins to phosphatidylinositol 4,5-bisphosphate in plasma membranes. Mol Cell Biol 22: 7953–7966.

    Article  CAS  Google Scholar 

  • Lo TL, Fong CW, Yusoff P, McKie AB, Chua MS, Leung HY et al. (2006). Sprouty and cancer: the first terms report. Cancer Lett 242: 141–150.

    Article  CAS  Google Scholar 

  • Maeng YS, Min JK, Kim JH, Yamagishi A, Mochizuki N, Kwon JY et al. (2006). ERK is an anti-inflammatory signal that suppresses expression of NF-κB-dependent inflammatory genes by inhibiting IKK activity in endothelial cells. Cell Signal 18: 994–1005.

    Article  CAS  Google Scholar 

  • Minowada G, Jarvis LA, Chi CL, Neubuser A, Sun X, Hacohen N et al. (1999). Vertebrate Sprouty genes are induced by FGF signaling and can cause chondrodysplasia when overexpressed. Development 126: 4465–4475.

    CAS  PubMed  Google Scholar 

  • Ohmori S, Sakai N, Shirai Y, Yamamoto H, Miyamoto E, Shimizu N et al. (2000). Importance of protein kinase C targeting for the phosphorylation of its substrate, myristoylated alanine-rich C-kinase substrate. J Biol Chem 275: 26449–26457.

    Article  CAS  Google Scholar 

  • Ozdener F, Dangelmaier C, Ashby B, Kunapuli SP, Daniel JL . (2002). Activation of phospholipase Cγ2 by tyrosine phosphorylation. Mol Pharmacol 62: 672–679.

    Article  CAS  Google Scholar 

  • Qin L, Zeng H, Zhao D . (2006). Requirement of protein kinase D tyrosine phosphorylation for VEGF-A165-induced angiogenesis through its interaction and regulation of phospholipase Cγ phosphorylation. J Biol Chem 281: 32550–32558.

    Article  CAS  Google Scholar 

  • Reich A, Sapir A, Shilo B . (1999). Sprouty is a general inhibitor of receptor tyrosine kinase signaling. Development 126: 4139–4147.

    CAS  PubMed  Google Scholar 

  • Sasaki A, Taketomi T, Kato R, Saeki K, Nonami A, Sasaki M et al. (2003). Mammalian Sprouty4 suppresses Ras-independent ERK activation by binding to Raf1. Nat Cell Biol 5: 427–432.

    Article  CAS  Google Scholar 

  • Sasaki A, Taketomi T, Wakioka T, Kato R, Yoshimura A . (2001). Identification of a dominant negative mutant of Sprouty that potentiates fibroblast growth factor but not epidermal growth factor-induced ERK activation. J Biol Chem 276: 36804–36808.

    Article  CAS  Google Scholar 

  • Sivak JM, Petersen LF, Amaya E . (2005). FGF signal interpretation is directed by Sprouty and Spred proteins during mesoderm formation. Dev Cell 8: 689–701.

    Article  CAS  Google Scholar 

  • Stauffer TP, Ahn S, Meyer T . (1998). Receptor-induced transient reduction in plasma membrane PtdIns(4,5)P2 concentration monitored in living cells. Curr Biol 8: 343–346.

    Article  CAS  Google Scholar 

  • Swierczynski SL, Blackshear PJ . (1995). Membrane association of the myristoylated alanine-rich C kinase substrate (MARCKS) protein. Mutational analysis provides evidence for complex interactions. J Biol Chem 270: 13436–13445.

    Article  CAS  Google Scholar 

  • Taketomi T, Yoshiga D, Taniguchi K, Kobayashi T, Nonami A, Kato R et al. (2005). Loss of mammalian Sprouty2 leads to enteric neuronal hyperplasia and esophageal achalasia. Nat Neurosci 8: 855–857.

    Article  CAS  Google Scholar 

  • Taniguchi K, Kohno R, Ayada T, Kato R, Ichiyama K, Morisada T et al. (2007). Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Mol Cell Biol 27: 4541–4550.

    Article  CAS  Google Scholar 

  • Tefft JD, Lee M, Smith S, Leinwand M, Zhao J, Bringas Jr P et al. (1999). Conserved function of mSpry-2, a murine homolog of Drosophila sprouty, which negatively modulates respiratory organogenesis. Curr Biol 9: 219–222.

    Article  CAS  Google Scholar 

  • Wang Y, Janicki P, Koster I, Berger CD, Wenzl C, Grosshans J et al. (2008). Xenopus paraxial protocadherin regulates morphogenesis by antagonizing Sprouty. Genes Dev 22: 878–883.

    Article  CAS  Google Scholar 

  • Wong C, Jin ZG . (2005). Protein kinase C-dependent protein kinase D activation modulates ERK signal pathway and endothelial cell proliferation by vascular endothelial growth factor. J Biol Chem 280: 33262–33269.

    Article  CAS  Google Scholar 

  • Yao YG, Duh EJ . (2004). VEGF selectively induces Down syndrome critical region 1 gene expression in endothelial cells: a mechanism for feedback regulation of angiogenesis? Biochem Biophys Res Commun 321: 648–656.

    Article  CAS  Google Scholar 

  • Yigzaw Y, Cartin L, Pierre S, Scholich K, Patel TB . (2001). The C terminus of sprouty is important for modulation of cellular migration and proliferation. J Biol Chem 276: 22742–22747.

    Article  CAS  Google Scholar 

  • Yusoff P, Lao DH, Ong SH, Wong ES, Lim J, Lo TL et al. (2002). Sprouty2 inhibits the Ras/MAP kinase pathway by inhibiting the activation of Raf. J Biol Chem 277: 3195–3201.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T Yoshioka and M Ohtsu for technical assistance, Dr Sasaki (Akita University), Dr Kawahara, Dr Okuno and Dr Yokomizo (Kyushu University) for reagents and discussions and Y Nishi for manuscript preparation. This study was supported by special Grants-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology of Japan, the Program for Promotion of Fundamental Studies in Health Sciences of the National Institute of Biomedical Innovation (NIBIO), the Takeda Science Foundation, the Kato Memorial Trust for Nambyo Research, the Mitsubishi Pharma Research Foundation, the Nakatomi Foundation, the Naito Foundation, Astellas Foundation for Research on Metabolic Disorders, the Yakult Bioscience Research Foundation and the Princess Takamatsu Cancer Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Yoshimura.

Additional information

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ayada, T., Taniguchi, K., Okamoto, F. et al. Sprouty4 negatively regulates protein kinase C activation by inhibiting phosphatidylinositol 4,5-biphosphate hydrolysis. Oncogene 28, 1076–1088 (2009). https://doi.org/10.1038/onc.2008.464

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.464

Keywords

This article is cited by

Search

Quick links