Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The aurora kinase A regulates GSK-3β in gastric cancer cells

Abstract

Aurora kinase A (AURKA) is located at 20q13, a region that is frequently amplified in gastric cancer. In this study, we have investigated the role of AURKA in regulating glycogen synthase kinase (GSK)-3β and β-catenin/TCF complex in gastric cancer cells. Our results demonstrate a significant increase in the phosphorylation of GSK-3β at Ser 9 following the overexpression of AURKA in AGS cells. The immunoprecipitation with antibodies specific for AURKA and GSK-3β indicated that the two proteins coexist in the same protein complex. The recombinant human AURKA protein phosphorylated the GSK-3β protein at Ser 9 in a concentration-dependent manner, in vitro. The phosphorylation of β-catenin (Ser33/37/Thr41) by GSK-3β is known to target β-catenin towards degradation. In line with our findings, the increase in phospho-GSK-3β level was accompanied by a significant decrease in β-catenin phosphorylation (Ser33/37/Thr41) and accumulation of β-catenin protein. The knockdown of AURKA reversed the phosphorylation of GSK-3β and the β-catenin protein levels. The immunofluorescence analysis demonstrated colocalization of AURKA and GSK-3β proteins and a significant increase in the nuclear β-catenin levels in cells overexpressing AURKA. The β-catenin/TCF transcription activity was measured using the pTopFlash and its mutant pFopFlash luciferase reporter vectors. Indeed, AURKA overexpression led to a significant increase in the pTopFlash reporter activity, whereas kinase dead AURKA mutant (D274A) had no effect. Consistent with these findings, we detected a significant mRNA up-regulation of several direct targets of the β-catenin/TCF transcription complex (cyclin D1, c-MYC, c-MYC-binding protein, CLDN1, FGF18 and vascular endothelial growth factor), and a two-fold increase in the proliferation rate in AURKA overexpressing cells. We conclude that the AURKA/GSK-3β interaction is important in regulating β-catenin, underscoring a novel oncogenic potential for AURKA in gastric tumorigenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aberle H, Bauer A, Stappert J, Kispert A, Kemler R . (1997). Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J 16: 3797–3804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behrens J, von Kries JP, Kuhl M, Bruhn L, Wedlich D, Grosschedl R et al. (1996). Functional interaction of beta-catenin with the transcription factor LEF-1. Nature 382: 638–642.

    Article  CAS  PubMed  Google Scholar 

  • Bischoff JR, Anderson L, Zhu Y, Mossie K, Ng L, Souza B et al. (1998). A homologue of Drosophila aurora kinase is oncogenic and amplified in human colorectal cancers. EMBO J 17: 3052–3065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clements WM, Wang J, Sarnaik A, Kim OJ, MacDonald J, Fenoglio-Preiser C et al. (2002). Beta-catenin mutation is a frequent cause of Wnt pathway activation in gastric cancer. Cancer Res 62: 3503–3506.

    CAS  PubMed  Google Scholar 

  • Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P et al. (1999). The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18: 2883–2891.

    Article  CAS  PubMed  Google Scholar 

  • Damalas A, Ben-Ze'ev A, Simcha I, Shtutman M, Leal JF, Zhurinsky J et al. (1999a). Excess beta-catenin promotes accumulation of transcriptionally active p53. EMBO J 18: 3054–3063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damalas A, Ben-Ze'ev A, Simcha I, Shtutman M, Leal JF, Zhurinsky J et al. (1999b). Excess beta-catenin promotes accumulation of transcriptionally active p53. EMBO J 18: 3054–3063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dar AA, Zaika A, Piazuelo MB, Correa P, Koyama T, Belkhiri A et al. (2008). Frequent overexpression of Aurora kinase A in upper gastrointestinal adenocarcinomas correlates with potent antiapoptotic functions. Cancer 112: 1688–1698.

    Article  CAS  PubMed  Google Scholar 

  • Earle CC, Maroun JA . (1999). Adjuvant chemotherapy after curative resection for gastric cancer in non-Asian patients: revisiting a meta-analysis of randomised trials. Eur J Cancer 35: 1059–1064.

    Article  CAS  PubMed  Google Scholar 

  • El-Rifai W, Frierson HJ, Moskaluk C, Harper J, Petroni G, Bissonette E et al. (2001). Genetic differences between adenocarcinomas arising in Barrett's esophagus and gastric mucosa. Gastroenterology 121: 592–598.

    Article  CAS  PubMed  Google Scholar 

  • El-Rifai W, Moskaluk CA, Abdrabbo MK, Harper J, Yoshida C, Riggins GJ et al. (2002). Gastric cancers overexpress S100A calcium-binding proteins. Cancer Res 62: 6823–6826.

    CAS  PubMed  Google Scholar 

  • Gamallo C, Palacios J, Moreno G, Calvo de Mora J, Suarez A, Armas A . (1999). beta-catenin expression pattern in stage I and II ovarian carcinomas: relationship with beta-catenin gene mutations, clinicopathological features, and clinical outcome. Am J Pathol 155: 527–536.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giet R, Petretti C, Prigent C . (2005). Aurora kinases, aneuploidy and cancer, a coincidence or a real link? Trends Cell Biol 15: 241–250.

    Article  CAS  PubMed  Google Scholar 

  • Giet R, Prigent C . (1999). Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases. J Cell Sci 112 (Part 21): 3591–3601.

    CAS  PubMed  Google Scholar 

  • Giles FJ, Cortes J, Jones D, Bergstrom D, Kantarjian H, Freedman SJ . (2007). MK-0457, a novel kinase inhibitor, is active in patients with chronic myeloid leukemia or acute lymphocytic leukemia with the T315I BCR-ABL mutation. Blood 109: 500–502.

    Article  CAS  PubMed  Google Scholar 

  • Giles RH, van Es JH, Clevers H . (2003). Caught up in a Wnt storm: Wnt signaling in cancer. Biochim Biophys Acta 1653: 1–24.

    CAS  PubMed  Google Scholar 

  • He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT et al. (1998). Identification of c-MYC as a target of the APC pathway. Science 281: 1509–1512.

    Article  CAS  PubMed  Google Scholar 

  • Hojilla CV, Kim I, Kassiri Z, Fata JE, Fang H, Khokha R . (2007). Metalloproteinase axes increase beta-catenin signaling in primary mouse mammary epithelial cells lacking TIMP3. J Cell Sci 120: 1050–1060.

    Article  CAS  PubMed  Google Scholar 

  • Hu W, Kavanagh JJ, Deaver M, Johnston DA, Freedman RS, Verschraegen CF et al. (2005). Frequent overexpression of STK15/Aurora-A/BTAK and chromosomal instability in tumorigenic cell cultures derived from human ovarian cancer. Oncol Res 15: 49–57.

    Article  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Murray T, Xu J, Smigal C et al. (2006). Cancer statistics, 2006. CA Cancer J Clin 56: 106–130.

    Article  PubMed  Google Scholar 

  • Kamada K, Yamada Y, Hirao T, Fujimoto H, Takahama Y, Ueno M et al. (2004). Amplification/overexpression of Aurora-A in human gastric carcinoma: potential role in differentiated type gastric carcinogenesis. Oncol Rep 12: 593–599.

    CAS  PubMed  Google Scholar 

  • Katayama H, Sasai K, Kawai H, Yuan ZM, Bondaruk J, Suzuki F et al. (2004). Phosphorylation by aurora kinase A induces Mdm2-mediated destabilization and inhibition of p53. Nat Genet 36: 55–62.

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi A, Kishida S, Yamamoto H . (2006). Regulation of Wnt signaling by protein–protein interaction and post-translational modifications. Exp Mol Med 38: 1–10.

    Article  CAS  PubMed  Google Scholar 

  • Koh TJ, Bulitta CJ, Fleming JV, Dockray GJ, Varro A, Wang TC . (2000). Gastrin is a target of the beta-catenin/TCF-4 growth-signaling pathway in a model of intestinal polyposis. J Clin Invest 106: 533–539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller JR, Hocking AM, Brown JD, Moon RT . (1999). Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene 18: 7860–7872.

    Article  CAS  PubMed  Google Scholar 

  • Mitsiades CS, Mitsiades N, Koutsilieris M . (2004). The Akt pathway: molecular targets for anti-cancer drug development. Curr Cancer Drug Targets 4: 235–256.

    Article  CAS  PubMed  Google Scholar 

  • Morin PJ, Sparks AB, Korinek V, Barker N, Clevers H, Vogelstein B et al. (1997). Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275: 1787–1790.

    Article  CAS  PubMed  Google Scholar 

  • Nakatsuru S, Yanagisawa A, Ichii S, Tahara E, Kato Y, Nakamura Y et al. (1992). Somatic mutation of the APC gene in gastric cancer: frequent mutations in very well differentiated adenocarcinoma and signet-ring cell carcinoma. Hum Mol Genet 1: 559–563.

    Article  CAS  PubMed  Google Scholar 

  • Ogawa E, Takenaka K, Katakura H, Adachi M, Otake Y, Toda Y et al. (2008). Perimembrane Aurora-A expression is a significant prognostic factor in correlation with proliferative activity in non-small-cell lung cancer (NSCLC). Ann Surg Oncol 15: 547–554.

    Article  PubMed  Google Scholar 

  • Orford K, Crockett C, Jensen JP, Weissman AM, Byers SW . (1997). Serine phosphorylation-regulated ubiquitination and degradation of beta-catenin. J Biol Chem 272: 24735–24738.

    Article  CAS  PubMed  Google Scholar 

  • Ouchi M, Fujiuchi N, Sasai K, Katayama H, Minamishima YA, Ongusaha PP et al. (2004). BRCA1 phosphorylation by Aurora-A in the regulation of G2 to M transition. J Biol Chem 279: 19643–19648.

    Article  CAS  PubMed  Google Scholar 

  • Pap M, Cooper GM . (1998). Role of glycogen synthase kinase-3 in the phosphatidylinositol 3-Kinase/Akt cell survival pathway. J Biol Chem 273: 19929–19932.

    Article  CAS  PubMed  Google Scholar 

  • Pennica D, Swanson TA, Welsh JW, Roy MA, Lawrence DA, Lee J et al. (1998). WISP genes are members of the connective tissue growth factor family that are up-regulated in wnt-1-transformed cells and aberrantly expressed in human colon tumors. Proc Natl Acad Sci USA 95: 14717–14722.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polakis P . (1999). The oncogenic activation of beta-catenin. Curr Opin Genet Dev 9: 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Sherr CJ, Roberts JM . (1999). CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  • Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R et al. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA 96: 5522–5527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sourbier C, Lindner V, Lang H, Agouni A, Schordan E, Danilin S et al. (2006). The phosphoinositide 3-kinase/Akt pathway: a new target in human renal cell carcinoma therapy. Cancer Res 66: 5130–5142.

    Article  CAS  PubMed  Google Scholar 

  • Sparks AB, Morin PJ, Vogelstein B, Kinzler KW . (1998). Mutational analysis of the APC/beta-catenin/Tcf pathway in colorectal cancer. Cancer Res 58: 1130–1134.

    CAS  PubMed  Google Scholar 

  • Tanaka T, Kimura M, Matsunaga K, Fukada D, Mori H, Okano Y . (1999). Centrosomal kinase AIK1 is overexpressed in invasive ductal carcinoma of the breast. Cancer Res 59: 2041–2044.

    CAS  PubMed  Google Scholar 

  • Terris B, Pineau P, Bregeaud L, Valla D, Belghiti J, Tiollais P et al. (1999). Close correlation between beta-catenin gene alterations and nuclear accumulation of the protein in human hepatocellular carcinomas. Oncogene 18: 6583–6588.

    Article  CAS  PubMed  Google Scholar 

  • Tetsu O, McCormick F . (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398: 422–426.

    Article  CAS  PubMed  Google Scholar 

  • Tong T, Zhong Y, Kong J, Dong L, Song Y, Fu M et al. (2004). Overexpression of Aurora-A contributes to malignant development of human esophageal squamous cell carcinoma. Clin Cancer Res 10: 7304–7310.

    Article  CAS  PubMed  Google Scholar 

  • Varis A, Puolakkainen P, Savolainen H, Kokkola A, Salo J, Nieminen O et al. (2001). DNA copy number profiling in esophageal Barrett adenocarcinoma: comparison with gastric adenocarcinoma and esophageal squamous cell carcinoma. Cancer Genet Cytogenet 127: 53–58.

    Article  CAS  PubMed  Google Scholar 

  • Voeller HJ, Truica CI, Gelmann EP . (1998). Beta-catenin mutations in human prostate cancer. Cancer Res 58: 2520–2523.

    CAS  PubMed  Google Scholar 

  • Wang C, Li Z, Fu M, Bouras T, Pestell RG . (2004). Signal transduction mediated by cyclin D1: from mitogens to cell proliferation: a molecular target with therapeutic potential. Cancer Treat Res 119: 217–237.

    Article  CAS  PubMed  Google Scholar 

  • Washington K, Chiappori A, Hamilton K, Shyr Y, Blanke C, Johnson D et al. (1998). Expression of beta-catenin, alpha-catenin, and E-cadherin in Barrett's esophagus and esophageal adenocarcinomas (In Process Citation). Mod Pathol 11: 805–813.

    CAS  PubMed  Google Scholar 

  • Yamada T, Takaoka AS, Naishiro Y, Hayashi R, Maruyama K, Maesawa C et al. (2000). Transactivation of the multidrug resistance 1 gene by T-cell factor 4/beta-catenin complex in early colorectal carcinogenesis. Cancer Res 60: 4761–4766.

    CAS  PubMed  Google Scholar 

  • Yang H, He L, Kruk P, Nicosia SV, Cheng JQ . (2006). Aurora-A induces cell survival and chemoresistance by activation of Akt through a p53-dependent manner in ovarian cancer cells. Int J Cancer 119: 2304–2312.

    Article  CAS  PubMed  Google Scholar 

  • Zhang YJ, Jiang W, Chen CJ, Lee CS, Kahn SM, Santella RM et al. (1993). Amplification and overexpression of cyclin D1 in human hepatocellular carcinoma. Biochem Biophys Res Commun 196: 1010–1016.

    Article  CAS  PubMed  Google Scholar 

  • Zhou H, Kuang J, Zhong L, Kuo WL, Gray JW, Sahin A et al. (1998). Tumour amplified kinase STK15/BTAK induces centrosome amplification, aneuploidy and transformation. Nat Genet 20: 189–193.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by a pilot fund from the National Cancer Institute GI SPORE grant CA95103 and the Vanderbilt-Ingram Cancer Center support funds. The contents of this work are solely the responsibility of the authors and do not necessarily represent the official views of the National Cancer Institute or Vanderbilt University Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W El-Rifai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dar, A., Belkhiri, A. & El-Rifai, W. The aurora kinase A regulates GSK-3β in gastric cancer cells. Oncogene 28, 866–875 (2009). https://doi.org/10.1038/onc.2008.434

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.434

Keywords

This article is cited by

Search

Quick links