Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

In vitro and in vivo analysis of B-Myb in basal-like breast cancer

Abstract

A defining feature of basal-like breast cancer, a breast cancer subtype with poor clinical prognosis, is the high expression of ‘proliferation signature’ genes. We identified B-Myb, a MYB family transcription factor that is often amplified and overexpressed in many tumor types, as being highly expressed in the proliferation signature. However, the roles of B-Myb in disease progression, and its mammary-specific transcriptional targets, are poorly understood. Here, we showed that B-Myb expression is a significant predictor of survival and pathological complete response to neoadjuvant chemotherapy in breast cancer patients. We also identified a significant association between the G/G genotype of a nonsynonymous B-Myb germline variant (rs2070235, S427G) and an increased risk of basal-like breast cancer [OR 2.0, 95% CI (1.1–3.8)]. In immortalized, human mammary epithelial cell lines, but not in basal-like tumor lines, cells ectopically expressing wild-type B-Myb or the S427G variant showed increased sensitivity to two DNA topoisomerase IIα inhibitors, but not to other chemotherapeutics. In addition, microarray analyses identified many G2/M genes as being induced in B-Myb overexpressing cells. These results confirm that B-Myb is involved in cell cycle control, and that its dysregulation may contribute to increased sensitivity to a specific class of chemotherapeutic agents. These data provide insight into the influence of B-Myb in human breast cancer, which is of potential clinical importance for determining disease risk and for guiding treatment.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Bergamaschi A, Kim YH, Wang P, Sørlie T, Hernandez-Boussard T, Lonning PE et al. (2006). Distinct patterns of DNA copy number alteration are associated with different clinicopathological features and gene-expression subtypes of breast cancer. Genes, Chromosomes Cancer 45: 1033–1040.

    Article  CAS  PubMed  Google Scholar 

  • Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F et al. (2007). The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13: 2329–2334.

    Article  CAS  PubMed  Google Scholar 

  • Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K et al. (2006). Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295: 2492–2502.

    Article  CAS  PubMed  Google Scholar 

  • Chin K, DeVries S, Fridlyand J, Spellman PT, Roydasgupta R, Kuo W-L et al. (2006). Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell 10: 529–541.

    Article  CAS  PubMed  Google Scholar 

  • Davidson CJ, Tirouvanziam R, Herzenberg LA, Lipsick JS . (2005). Functional evolution of the vertebrate Myb gene family: B-Myb, but neither A-Myb nor c-Myb, complements Drosophila Myb in hemocytes. Genetics 169: 215–229.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derenzini M, Donati G, Mazzini G, Montanaro L, Vici M, Ceccarelli C et al. (2008). Loss of retinoblastoma tumor suppressor protein makes human breast cancer cells more sensitive to antimetabolite exposure. Clin Cancer Res 14: 2199–2209.

    Article  CAS  PubMed  Google Scholar 

  • Herschkowitz JI, He X, Fan C, Perou CM . (2008). The functional loss of the retinoblastoma tumor suppressor is a common event in basal-like and luminal B breast carcinomas. Breast Cancer Res 10: R75.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hess KR, Anderson K, Symmans WF, Valero V, Ibrahim N, Mejia JA et al. (2006). Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer. J Clin Oncol 24: 4236–4244.

    Article  CAS  PubMed  Google Scholar 

  • Hoadley K, Weigman V, Fan C, Sawyer L, He X, Troester M et al. (2007). EGFR associated expression profiles vary with breast tumor subtype. BMC Genomics 8: 258.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hosack DA, Dennis Jr G, Sherman BT, Lane HC, Lempicki RA . (2003). Identifying biological themes within lists of genes with EASE. Genome Biol 4 (10): R70.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Fan C, Oh D, Marron J, He X, Qaqish B et al. (2006). The molecular portraits of breast tumors are conserved across microarray platforms. BMC Genomics 7: 96.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Troester MA, Perou CM . (2005). High reproducibility using sodium hydroxide-stripped long oligonucleotide DNA microarrays. Biotechniques 38: 121–124.

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Araki S, Matsunaga S, Itoh T, Nishihama R, Machida Y et al. (2001). G2/M-phase-specific transcription during the plant cell cycle is mediated by c-Myb-like transcription factors. Plant Cell 13: 1891–1905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klempnauer K-H, Gonda TJ, Bishop MJ . (1982). Nucleotide sequence of the retroviral leukemia gene v-myb and its cellular progenitor c-myb: the architecture of a transduced oncogene. Cell 31: 453–463.

    Article  CAS  PubMed  Google Scholar 

  • Leprince D, Gegonne A, Coll J, de Taisne C, Schneeberger A, Lagrou C et al. (1983). A putative second cell-derived oncogene of the avian leukaemia retrovirus E26. Nature 306: 395.

    Article  CAS  PubMed  Google Scholar 

  • Malaterre J, Carpinelli M, Ernst M, Alexander W, Cooke M, Sutton S et al. (2007). c-Myb is required for progenitor cell homeostasis in colonic crypts. Proc Natl Acad Sci USA 104: 3829–3834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miller LD, Smeds J, George J, Vega VB, Vergara L, Ploner A et al. (2005). An expression signature for p53 status in human breast cancer predicts mutation status, transcriptional effects, and patient survival. Proc Natl Acad Sci 102: 13550–13555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Millikan R, Eaton A, Worley K, Biscocho L, Hodgson E, Huang W-Y et al. (2003). HER2 codon 655 polymorphism and risk of breast cancer in African Americans and Whites. Breast Cancer Res Treat 79: 355.

    Article  CAS  PubMed  Google Scholar 

  • Millikan RC, Newman B, Tse C-K, Moorman PG, Conway K, Smith K et al. (2008). Epidemiology of basal-like breast cancer. Breast Cancer Res Treat 109: 123–139.

    Article  PubMed  Google Scholar 

  • Mucenski ML, McLain K, Kier AB, Swerdlow SH, Schreiner CM, Miller TA et al. (1991). A functional c-myb gene is required for normal murine fetal hepatic hematopoiesis. Cell 65: 677.

    Article  CAS  PubMed  Google Scholar 

  • Ness SA . (2003). Myb protein specificity: evidence of a context-specific transcription factor code. Blood Cells Mol Dis 31: 192.

    Article  CAS  PubMed  Google Scholar 

  • Newman B, Moorman P, Millikan R, Qaqish B, Geradts J, Aldrich T et al. (1995). The Carolina Breast Cancer Study: integrating population-based epidemiology and molecular biology. Breast Cancer Res Treat 35: 51–60.

    Article  CAS  PubMed  Google Scholar 

  • Nomura N, Takahashi M, Matsui M, Ishii S, Date T, Sasamoto S et al. (1988). Isolation of human cDNA clones of myb-related genes, A-myb and B-myb. Nucleic Acids Res 16: 11075–11089.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Osterloh L, vonEyss B, Schmit F, Rein L, Hübner D, Samans B et al. (2007). The human synMuv-like protein LIN-9 is required for transcription of G2/M genes and for entry into mitosis. EMBO J 26: 144–157.

    Article  CAS  PubMed  Google Scholar 

  • Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. (2000). Molecular portraits of human breast tumours. Nature 406: 747.

    Article  CAS  PubMed  Google Scholar 

  • Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME et al. (2002). Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature 415: 436.

    Article  CAS  PubMed  Google Scholar 

  • Rosinski JA, Atchley WR . (1998). Molecular evolution of the Myb family of transcription factors: evidence for polyphyletic origin. J Mol Evol 46: 74–83.

    Article  CAS  PubMed  Google Scholar 

  • Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K et al. (2005). Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res 11: 5678–5685.

    Article  CAS  PubMed  Google Scholar 

  • Sala A . (2005). B-MYB, a transcription factor implicated in regulating cell cycle, apoptosis and cancer. Eur J Cancer 41: 2479–2484.

    Article  CAS  PubMed  Google Scholar 

  • Schwab R, Bussolari R, Corvetta D, Chayka O, Santilli G, Kwok JMM et al. (2007). Isolation and functional assessment of common, polymorphic variants of the B-MYB proto-oncogene associated with a reduced cancer risk. Oncogene 27: 2929–2933.

    Article  PubMed  Google Scholar 

  • Smith P, Soues S, Gottlieb T, Falk S, Watson J, Osborne R et al. (1994). Etoposide-induced cell cycle delay and arrest-dependent modulation of DNA topoisomerase II in small-cell lung cancer cells. Br J Cancer 70: 914–921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98: 10869–10874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al. (2003). Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100: 8418–8423.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka Y, Patestos NP, Maekawa T, Ishii S . (1999). B-myb is required for inner cell mass formation at an early stage of development. J Biol Chem 274: 28067–28070.

    Article  CAS  PubMed  Google Scholar 

  • Toscani A, Mettus RV, Coupland R, Simpkins H, Litvin J, Orth J et al. (1997). Arrest of spermatogenesis and defective breast development in mice lacking A-myb. Nature 386: 713.

    Article  CAS  PubMed  Google Scholar 

  • Trauth K, Mutschler B, Jenkins N, Gilbert D, Copeland N, Klempnauer K . (1994). Mouse A-myb encodes a trans-activator and is expressed in mitotically active cells of the developing central nervous system, adult testis and B lymphocytes. EMBO J 13: 5994–6005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Troester MA, Hoadley KA, Sorlie T, Herbert B-S, Borresen-Dale A-L, Lonning PE et al. (2004). Cell-type-specific responses to chemotherapeutics in breast cancer. Cancer Res 64: 4218–4226.

    Article  CAS  PubMed  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G . (2001). Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98: 5116–5121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van de Vijver MJ, He YD, van ‘t Veer LJ, Dai H, Hart AAM, Voskuil DW et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347: 1999–2009.

    Article  CAS  PubMed  Google Scholar 

  • Vanewijk PH, Hoekstra JA . (1993). Calculation of the EC50 and its confidence interval when subtoxic stimulus is present. Ecotoxicol Environ Saf 25: 25.

    Article  CAS  Google Scholar 

  • Wang Y, Klijn JGM, Zhang Y, Sieuwerts AM, Look MP, Yang F et al. (2005). Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet 365: 671.

    Article  CAS  PubMed  Google Scholar 

  • Whitfield ML, George LK, Grant GD, Perou CM . (2006). Common markers of proliferation. Nat Rev Cancer 6: 99–106.

    Article  CAS  PubMed  Google Scholar 

  • Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA, Alexander KE et al. (2002). Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol Biol Cell 13: 1977–2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu W, Giangrande PH, Nevins JR . (2004). E2Fs link the control of G1/S and G2/M transcription. EMBO J 23: 4615–4626.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Drs Melissa A Troester and William K Kaufmann for comments and discussion. This work was supported by funds from the NCI Breast SPORE program (P50-CA58223-09A1), by RO1-CA-101227-01, by the Breast Cancer Research Foundation and the V Foundation for Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C M Perou.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thorner, A., Hoadley, K., Parker, J. et al. In vitro and in vivo analysis of B-Myb in basal-like breast cancer. Oncogene 28, 742–751 (2009). https://doi.org/10.1038/onc.2008.430

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.430

Keywords

This article is cited by

Search

Quick links