Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Requirement for chromatin-remodeling complex in novel tumor suppressor HIC1-mediated transcriptional repression and growth control

A Retraction to this article was published on 20 October 2011

Abstract

HIC1 is a newly discovered tumor suppressor and transcriptional repressor that is frequently silenced in human tumors. HIC1 protein expression has been linked to better outcomes in breast cancers. The molecular mechanism underlying HIC1-mediated transcriptional and growth suppression, and the relevant targets of HIC1-mediated transcriptional modulation, is currently unclear. We have identified an HIC1 DNA-binding site in E2F-responsive gene promoters and demonstrate that HIC1 targets E2F-responsive genes for transcriptional regulation and growth suppression. We and others have recently discovered that Brg1, a central component of the SWI/SNF chromatin-remodeling family, is required for the transcriptional regulation of multiple cell cycle control-related genes, including E2F-responsive promoters. We studied HIC1 interactions with, and dependence upon, Brg1 activity, and found that HIC1 can recruit Brg1 to E2F-responsive promoters and that its transcriptional repression of these genes is dependent upon Brg1. These data indicate that HIC1 is a central molecule in a novel mechanism controlling cell growth and that the disruption of this HIC1-mediated pathway may lead to abnormal cell proliferation and, ultimately, cancer.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Aggerholm A, Holm MS, Guldberg P, Olesen LH, Hokland P . (2006). Promoter hypermethylation of p15, hic1, cdh1, and er is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients. Eur J Haematol 76: 23–32.

    Article  CAS  PubMed  Google Scholar 

  • Banine F, Bartlett C, Gunawardena R, Muchardt C, Yaniv M, Knudsen ES et al. (2005). Swi/snf chromatin-remodeling factors induce changes in DNA methylation to promote transcriptional activation. Cancer Res 65: 3542–3547.

    Article  CAS  PubMed  Google Scholar 

  • Bertrand S, Pinte S, Stankovic-Valentin N, Deltour-Balerdi S, Guerardel C, Begue A et al. (2004). Identification and developmental expression of the zebrafish orthologue of the tumor suppressor gene hic1. Biochim Biophys Acta 1678: 57–66.

    Article  CAS  PubMed  Google Scholar 

  • Betz BL, Strobeck MW, Reisman DN, Knudsen ES, Weissman BE . (2002). Re-expression of hsnf5/ini1/baf47 in pediatric tumor cells leads to g1 arrest associated with induction of p16ink4a and activation of rb. Oncogene 21: 5193–5203.

    Article  CAS  PubMed  Google Scholar 

  • Britschgi C, Rizzi M, Grob TJ, Tschan MP, Hugli B, Reddy VA et al. (2006). Identification of the p53 family-responsive element in the promoter region of the tumor suppressor gene hypermethylated in cancer 1. Oncogene 25: 2030–2039.

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Cooper TK, Zahnow CA, Overholtzer M, Zhao Z, Ladanyi M et al. (2004). Epigenetic and genetic loss of hic1 function accentuates the role of p53 in tumorigenesis. Cancer Cell 6: 387–398.

    Article  CAS  PubMed  Google Scholar 

  • Chen WY, Baylin SB . (2005). Inactivation of tumor suppressor genes: choice between genetic and epigenetic routes. Cell Cycle 4: 10–12.

    Article  PubMed  Google Scholar 

  • Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB . (2005). Tumor suppressor hic1 directly regulates sirt1 to modulate p53-dependent DNA-damage responses. Cell 123: 437–448.

    Article  CAS  PubMed  Google Scholar 

  • Chen WY, Zeng X, Carter MG, Morrell CN, Chiu Yen RW, Esteller M et al. (2003). Heterozygous disruption of hic1 predisposes mice to a gender-dependent spectrum of malignant tumors. Nat Genet 33: 197–202.

    Article  CAS  PubMed  Google Scholar 

  • Chopin V, Leprince D . (2006). [Chromosome arm 17p13.3: Could hic1 be the one?]. Med Sci (Paris) 22: 54–61.

    Article  Google Scholar 

  • Dai Y, Ngo D, Forman LW, Qin DC, Jacob J, Faller DV . (2007). Sirtuin 1 is required for antagonist-induced transcriptional repression of androgen-responsive genes by the androgen receptor. Mol Endocrinol 21: 1807–1821.

    Article  CAS  PubMed  Google Scholar 

  • Dai Y, Ngo D, Jacob J, Forman LW, Faller DV . (2008). Prohibitin and the swi/snf atpase subunit brg1 are required for effective androgen antagonist-mediated transcriptional repression of androgen receptor-regulated genes. Carcinogenesis 29: 1725–1733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dasgupta P, Sun J, Wang S, Fusaro G, Betts V, Padmanabhan J et al. (2004). Disruption of the rb–raf-1 interaction inhibits tumor growth and angiogenesis. Mol Cell Biol 24: 9527–9541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deltour S, Pinte S, Guerardel C, Wasylyk B, Leprince D . (2002). The human candidate tumor suppressor gene hic1 recruits ctbp through a degenerate gldlskk motif. Mol Cell Biol 22: 4890–4901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunaief JL, Strober BE, Guha S, Khavari PA, Alin K, Luban J et al. (1994). The retinoblastoma protein and brg1 form a complex and cooperate to induce cell cycle arrest. Cell 79: 119–130.

    Article  CAS  PubMed  Google Scholar 

  • Fusaro G, Wang S, Chellappan S . (2002). Differential regulation of rb family proteins and prohibitin during camptothecin-induced apoptosis. Oncogene 21: 4539–4548.

    Article  CAS  PubMed  Google Scholar 

  • Giacinti C, Giordano A . (2006). Rb and cell cycle progression. Oncogene 25: 5220–5227.

    Article  CAS  PubMed  Google Scholar 

  • Guerardel C, Deltour S, Leprince D . (1999). Evolutionary divergence in the broad complex, tramtrack and bric a brac/poxviruses and zinc finger domain from the candidate tumor suppressor gene hypermethylated in cancer. FEBS Lett 451: 253–256.

    Article  CAS  PubMed  Google Scholar 

  • Inayoshi Y, Miyake K, Machida Y, Kaneoka H, Terajima M, Dohda T et al. (2006). Mammalian chromatin remodeling complex swi/snf is essential for enhanced expression of the albumin gene during liver development. J Biochem (Tokyo) 139: 177–188.

    Article  CAS  Google Scholar 

  • Lefebvre T, Pinte S, Guerardel C, Deltour S, Martin-Soudant N, Slomianny MC et al. (2004). The tumor suppressor hic1 (hypermethylated in cancer 1) is o-glcnac glycosylated. Eur J Biochem 271: 3843–3854.

    Article  CAS  PubMed  Google Scholar 

  • Melki JR, Vincent PC, Clark SJ . (1999). Cancer-specific region of hypermethylation identified within the hic1 putative tumour suppressor gene in acute myeloid leukaemia. Leukemia 13: 877–883.

    Article  CAS  PubMed  Google Scholar 

  • Nevins JR . (2001). The rb/e2f pathway and cancer. Hum Mol Genet 10: 699–703.

    Article  CAS  PubMed  Google Scholar 

  • Nicoll G, Crichton DN, McDowell HE, Kernohan N, Hupp TR, Thompson AM . (2001). Expression of the hypermethylated in cancer gene (hic-1) is associated with good outcome in human breast cancer. Br J Cancer 85: 1878–1882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinte S, Guerardel C, Deltour-Balerdi S, Godwin AK, Leprince D . (2004a). Identification of a second g-c-rich promoter conserved in the human, murine and rat tumor suppressor genes hic1. Oncogene 23: 4023–4031.

    Article  CAS  PubMed  Google Scholar 

  • Pinte S, Stankovic-Valentin N, Deltour S, Rood BR, Guerardel C, Leprince D . (2004b). The tumor suppressor gene hic1 (hypermethylated in cancer 1) is a sequence-specific transcriptional repressor: definition of its consensus binding sequence and analysis of its DNA binding and repressive properties. J Biol Chem 279: 38313–38324.

    Article  CAS  PubMed  Google Scholar 

  • Stankovic-Valentin N, Verger A, Deltour-Balerdi S, Quinlan KG, Crossley M, Leprince D . (2006). A l225a substitution in the human tumour suppressor hic1 abolishes its interaction with the corepressor ctbp. FEBS J 273: 2879–2890.

    Article  CAS  PubMed  Google Scholar 

  • Stevaux O, Dimova D, Frolov MV, Taylor-Harding B, Morris E, Dyson N . (2002). Distinct mechanisms of e2f regulation by drosophila rbf1 and rbf2. EMBO J 21: 4927–4937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strobeck MW, DeCristofaro MF, Banine F, Weissman BE, Sherman LS, Knudsen ES . (2001). The brg-1 subunit of the swi/snf complex regulates cd44 expression. J Biol Chem 276: 9273–9278.

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Rayman JB, Dynlacht BD . (2000). Analysis of promoter binding by the e2f and prb families in vivo: distinct e2f proteins mediate activation and repression. Genes Dev 14: 804–816.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Waha A, Koch A, Hartmann W, Mack H, Schramm J, Sorensen N et al. (2004). Analysis of hic-1 methylation and transcription in human ependymomas. Int J Cancer 110: 542–549.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Fusaro G, Padmanabhan J, Chellappan SP . (2002a). Prohibitin co-localizes with rb in the nucleus and recruits n-cor and hdac1 for transcriptional repression. Oncogene 21: 8388–8396.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Ghosh RN, Chellappan SP . (1998). Raf-1 physically interacts with rb and regulates its function: a link between mitogenic signaling and cell cycle regulation. Mol Cell Biol 18: 7487–7498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Nath N, Adlam M, Chellappan S . (1999a). Prohibitin, a potential tumor suppressor, interacts with rb and regulates e2f function. Oncogene 18: 3501–3510.

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Nath N, Minden A, Chellappan S . (1999b). Regulation of rb and e2f by signal transduction cascades: divergent effects of jnk1 and p38 kinases. EMBO J 18: 1559–1570.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong S, Weber JD . (2007). Deacetylation of the retinoblastoma tumour suppressor protein by sirt1. Biochem J 407: 451–460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Zhang B, Faller DV . (2002b). Prohibitin requires brg-1 and brm for the repression of e2f and cell growth. EMBO J 21: 3019–3028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Zhang B, Faller DV . (2004). Brg1/brm and prohibitin are required for growth suppression by estrogen antagonists. EMBO J 23: 2293–2303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Chambers KJ, Faller DV, Wang S . (2007). Reprogramming of the swi/snf complex for co-activation or co-repression in prohibitin-mediated estrogen receptor regulation. Oncogene 26: 7153–7157.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Srikumar P Chellappan for his continuous support. This study was partially supported by grants from Susan G Komen Breast Cancer Foundation Research Award (BCTR0403163) (SW) and the National Cancer Institute ((CA102940) (SW) and (CA101992) (DVF)) and by the Karin Grunebaum Cancer Research Foundation (DVF). SW is the recipient of DOD/CDMRP 2008 Breast Cancer Concept Award, Carter Family Foundation for Melanoma Research grant award, a BUSM Department of Medicine Pilot Project Grant Award and an Aid for Cancer Research grant award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, B., Chambers, K., Leprince, D. et al. Requirement for chromatin-remodeling complex in novel tumor suppressor HIC1-mediated transcriptional repression and growth control. Oncogene 28, 651–661 (2009). https://doi.org/10.1038/onc.2008.419

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/onc.2008.419

Keywords

This article is cited by

Search

Quick links